KETEK GmbH
Hofer Str. 3

. www.ketek.net phone +49 89 673 467 70
S AR info@ketek.net fax +49 89 673 467 77

Germany

KETEK

Digital Pulse Processor
Handel DLL

Quick Start

Table of Contents

1 Intended AUAIENCE ...ceiiiiiiiiieteee e e e e e 1
2 Conventions Used in this Documentccccuvviiiieeiiiniiiiiiieeeee e 1
3 Preliminary Detailsceeeeeeiieeeeeeeeeeceeee e 1

IR o 1= Lo [T o T [PPSR 1

3.2 EFTOF COUBS eoeieniiiiiiee ettt ettt e et e e e sttt e e e s et e e e e e s snbreeeeeesnnneeas 1

700 T 1N 1L PRSP 1
4 nitializing Handelcooooiiiee e 2
5 Starting the SYSLEMuviiiiiiiiieere e 2
6 Configuring the DPP2 for Data AcQUISItioN.......cccevveeiieiiiiiiiiiiiiieieeeeeeeeee, 2
7 Selecting @ Peaking TiMEccvvviiiiiiiieeiee e 4
8 CoNtrolliNG thE DPP ... 5

8.1 Starting and StOPPING @ RUN...cciiiiiiiiieiciiee et 5

8.2 Reading out the MCA SPECLIUM....cccciiiiiiiiecceere e 5

8.3 Preset LENGEN RUNS ..ooii ittt e s e e e e 6
9 ClEANING UP weriiiiieiiieiiieeee ettt e e e e e e e st e e e e e e s sanraaeaaaeeeas 7
10 EXAMPIE COUR o 8
11 Acquisition Values LiSt...cceeeiiiiiieiiiiiiiieice e 13
12 RUN DAta LiSt.. oot e e e e 13
13 Board Operations LiStcuuiiiiiiiiiieiiiieiceceeeeeee s 14
14 PARSET/Acquisition Value Mapping.....ccccovueeeereeeeieiiirieeeeeeeeeeeeivvveeeeenn 15
15 GENSET/Acquisition Value Mapping.....ccccovueeeeeeeeieiiiirieeeeeeeeeeeevvveeeeenns 15
16 GLOBSET/Acquisition Value Mappingcccccueeeeeeeeeeeiiirreeeeeeeeeeeeivveeeeenns 15
17 Available Peaking Timescovveeviiiiiiiiiieeeee e 16
I8 CONTACT .. e e e e e eeaees 17

This manual describes the DLL package which can be used for every KETEK system with
the VICO-DP (DPP2) under Microsoft Windows operating system.

Revision history:

Rev. 1.1, October 2020: Board Operations List updated (passthrough parameter added)
Rev. 1.0, December 2017

KETEK

KETEK

1 Intended Audience

This document is intended for users of the KETEK VICO-DP (DPP2) hardware who would like to interface to it using
the Handel driver library. This document assumes that users of the Handel driver library are familiar with the C pro-
gramming language.

2 Conventions Used in this Document

e This style is used to indicate source code.

e CHECK_ERROR is a placeholder for user-defined error handling.
(See the sample code for an example of how to implement such error handling in section 10)

3 Preliminary Details

3.1 Header Files

Before introducing the details of programming with the Handel API, it is important to discuss the relevant header files
and other external details related to Handel. The following headers must be included:

e handel.h defines and imports Handel routines.
e md_generic.h contains the constants for e.g. setting logging levels.
e handel_errors.h error status constants.

e handel_constants.h contains the constants used for Handel calls.

3.2 Error Codes

A good programming practice with Handel is to compare the returned status value with XIA_SUCCESS and then deal
with any returned errors before proceeding. All Handel routines (except for some of the debugging routines) return
an integer value indicating success or failure.

3.3 .INI Files
Besides the DLL package a hardware configuration file (.ini) is needed for the operation.

The simplest way to generate a proper .ini file is using the provided ProSpect software. Please connect the KETEK
DPP2 system to a PC using the desired interface, either USB or RS232. Start the ProSpect software.

Upon the first start an error window will be displayed as the .ini file is missing. The user can generate this file using
the option ‘Generate New File’ as shown below:

Fig. 1 Generate new .ini file in ProSpect

ProSpect Configuration File Error

Cannot load the configuration file:

Specified configuration file dees not exist.
Do you want to select a different file, or start the Configuration

Wizard to generate a new file?

Select File... €= er.ate View Log... Cancel
News File...

The .ini file is located in the following folder and can be copied into the user’s project folder:
C:\Users\<CURRENT_USER>\AppData\Roaming\XIA LLC\ProSpect\KETEK DPP2_usb2.ini

October 30th, 2020 Rev. 1.1 Page 1

In the next sections the function calls of the Handel DLL package will be described.

4 Initializing Handel

The first step in any program that uses Handel is to initialize the software library. Handel provides two routines to
achieve this goal: xialnit() and xialnitHandel(). In fact, xialnit() is nothing more then a wrapper around the following
two functions: xialnitHandel() and xiaLoadSystem(). The xialnit() is the recommended function for the initialization of
the system.

int status;

status = xialInit (“KETEK DPP2 usb2.ini”);
CHECK ERROR (status) ;

5 Starting the System

Once the initialization task has been completed, the next step is to “start the system.” This process performs several
operations including validating the hardware information supplied in the initialization file and verifying the specified
communication interface (USB or RS-232). Calling xiaStartSystem() is straightforward:

status = xiaStartSystem() ;
CHECK ERROR (status) ;

Once xiaStartSystem() has been called successfully, the system is ready to perform the standard DAQ operations such
as starting a run, stopping a run, reading out the MCA and saving parameter information.

6 Configuring the DPP2 for Data Acquisition

The DPP2 stores all of its firmware and operating parameters on-board in non-volatile memory. Further the DPP2 is
able to store 24 different peaking time configurations. For each of those additional measurement parameters (e.g.
gap time) can be set and saved to a PARameter SET (PARSET) in memory.

In addition to the PARSETSs, there are two other sets: GENeral SETs (GENSET) and GLOBal SETs (GLOBSET). The DPP2
contains a total of 5 GENSETs. The parameters in the GENSETs are gain and spectrum related. There is a single
GLOBSET which contain values specific to the detector preamplifier, debugging and run control.

A key component of configuring the DPP2 is choosing values for the various PARSETs and GENSETSs, and saving these

values to non-volatile memory. Not all of the PARSET/GENSET parameters map directly to acquisition values in Han-

del. The fact is you only need to modify a small subset of the total number of available parameters in order to adjust
the DPP2 for your system, if necessary.

A NOTE

Every KETEK system with DPP2 is preconfigured. Thus adjusting of the PARSET/GENSET parameters is not
mandatory.

In general your application should only need to swap between the different PARSET/GENSET entries. Furthermore, on
power-up, the DPP2 remembers which PARSET/GENSET was used last and loads it into memory so there is no need to
track PARSET/GENSET in your application.

In case some of the parameters needs to be readjusted proceed like in the following example. In this example, we
want to configure the DPP2 with the following settings (please also refer to the VICO-DP manual for more informa-
tion on those parameters):

KETEK

e PARSET number: 0

e GENSET number: 0

e Medium bin width granularity
e 4k spectrum

e Trigger threshold: 25

e Base gain: 5.700

Now the parameters will be set accordingly and saved into the DPP2 memory. Please note that after setting an acqui-
sition value (or values) that you “apply” the new value with a call to xiaBoardOperation(), as shown below:

double setGENSET = 0;
double setPARSET = 0;
double binWidth = 1.0;
double nMCA = 4096.0;
double threshold = 25.0;
double gain = 5.700;

//Select PARSET and GENSET you want to modify

status = xiaSetAcquisitionValues (0, “parset”, (void *)&setPARSET) ;
CHECK_ ERROR (status) ;
status = xiaSetAcquisitionValues (0, “genset”, (void *) &setGENSET) ;

CHECK_ ERROR (status) ;

//Modify some acquisition values

status = xiaSetAcquisitionValues (0, “mca bin width”, (void *)&binWidth);
CHECK_ERROR(StatuS);
status = xiaSetAcquisitionValues (0, “number mca channels”, (void *)&nMCA);

CHECK_ERROR(StatuS);

status = xiaSetAcquisitionValues (0, “trigger threshold”, (void *)é&threshold);
CHECK_ERROR(StatuS);

status = xiaSetAcquisitionValues (0, “gain”, (void *)&gain);
CHECK_ERROR(StatuS);

//Apply changes to parameters
status = xiaBoardOperation (0, “apply”, (void *)&ignored);

//Now these parameters will be saved to the GENSET = 0 and PARSET = O
double currentGENSET;
double currentPARSET;

October 30th, 2020 Rev. 1.1 Page 3

/* Check GENSET and PARSET which are currently selected.

those have been selected in the previous step */
status = xiaGetAcquisitionValues (0, “genset”,
CHECK ERROR (status) ;
printf (“Current GENSET = $1f\n”, currentGENSET) ;
status = xiaGetAcquisitionValues (0,
CHECK ERROR (status) ;

printf (“Current PARSET= %1f\n”,

“parset”,

currentPARSET) ;

Should be no. 0 as

¤tGENSET) ;

¤tPARSET) ;

/* Save to GENSET/PARSET at the same position as the previously selected

GENSET/PARSET (in this example position 0) */
unsigned short saveGENSET = (unsigned short) setGENSET;
unsigned short savePARSET = (unsigned short) setPARSET;

/* To be sure that only the

overwritten */

if (currentPARSET
{

setPARSET && currentGENSET

status = xiaBoardOperation (0,
CHECK ERROR (status) ;
status = xiaBoardOperation (0,
CHECK ERROR (status) ;

“save genset”,

“save parset”,

previously selected GENSET/PARSET will be
SetGENSET)
&saveGENSET) ;

&savePARSET) ;

A\ IMPORTANT

1. Select the GENSET/PARSET you want to modify
2. Modify the GENSET/PARSET parameters
3. Save the GENSET/PARSET parameters at the same position as selected in 1.

another GENSET/PARSET

As described in the above example the procedure of changing the parameters should be done in three steps:

Otherwise there is a risk that the parameters from one GENSET/PARSET could be overwritten with those from

7 Selecting a Peaking Time

In the previous example we simply saved our configuration to PARSET 0 (as well as GENSET 0) without any explana-
tion of what PARSET 0 corresponds to. Each of the PARSETs are equal to a different peaking time. To discover what

peaking times are available (see also Tab. 4 on page 16), use the following code:

int 1i;

double *peakingTimes = NULL;

//Print out the current peaking times
status = xiaBoardOperation (0, “get number pt per fippi”,
CHECK_ERROR (status) ;

VICO-DP Handel DLL Quick Start Page 4

&numberPeakingTimes) ;

KETEK
peakingTimes = (double *)malloc (numberPeakingTimes * sizeof (double));
CHECK MEM (peakingTimes) ;
status = xiaBoardOperation (0, “get current peaking times”, peakingTimes);

CHECK ERROR (status) ;

for (i = 0; i < MAX PTS; i++)
{

printf (“peaking time %d = $1f\n”, i, peakingTimes[i]);

where i corresponds to the PARSET responsible for that peaking time. To switch to peaking time/PARSET i, simply do:

double parset = (double)i;
status = xiaSetAcquisitionValues (0, “parset”, (void *)&parset);
CHECK_ERROR(statuS);

8 Controlling the DPP

Once the DPP2 is properly configured, it is ready to begin data acquisition tasks. This section discusses starting a run,
stopping a run, reading out the MCA spectrum and, lastly, configuring the DPP for preset length runs.

8.1 Starting and Stopping a Run

The Handel interface to starting and stopping the run are two simple routines: xiaStartRun () and
xiaStopRun (). Both routines require a detector channel number (like xiaSetAcquisitionValues ())as
their first argument, while xiaStartRun () also requires an unsigned short that determines if the MCA is to be
cleared when the run is started. To start a run with the MCA cleared, run for 5 seconds and then stop the run, the
following code may be used:

int status;

unsigned short clearMCA = 0;

status = xiaStartRun (0, clearMCA) ;

CHECK ERROR (status) ;

/* Windows API call. You can use whatever routine is available on your plat-
form to wait. */

Sleep (5000) ;

status = xiaStopRun (0) ;

CHECK ERROR (status) ;

A NOTE

For historical reasons, Handel and the DPP2 RS-232 command for starting a run have a different idea of how to
interpret the clear MCA value. The RS-232 command uses 0 to mean “resume run” and 1 to mean “clear the MCA”.
Handel uses 0 to mean “clear the MCA” and 1 to mean “resume run”.

8.2 Reading out the MCA Spectrum

Assuming that we are still running the PARSET 0 configuration from the previous section, we know that our MCA
spectrum length is 4096. In case you want to reduce the number of bytes that have to be sent to the host PC, you can
request either 1, 2, or 3 bytes per bin. The default setting in Handel is 3 bytes per bin, which is the same as the raw
value stored in the DSP’s memory. If you want to use 3 bytes per bin then you do not have to change anything. If you

October 30th, 2020 Rev. 1.1 Page 5

want to only return a single byte per bin, then use the following code:

double bytesPerBin = 1.0;
status = xiaSetAcquisitionValues (0, “bytes per bin”, (void *)&bytesPerBin);
CHECK ERROR (status) ;

A\ IMPORTANT

If the number of counts in a bin exceeds the requested bytes per bin, the DPP2 does not return an error. For
example, if there are OXADCDEF counts in a bin and you read out the MCA spectrum with bytes per bin set to 1,
that bin will return OxEF!

With the bytes per bin configured correctly, we are now ready to read out the MCA spectrum.

unsigned long mca[4096];
status = xiaGetRunData (0, “mca”, (void *)mca);
CHECK ERROR (status) ;

8.3 Preset Length Runs

The DPP2 supports preset runs, which allow you to specify that a run stop automatically after a certain amount of
time has passed or other criteria have been met. The four types of preset runs are fixed livetime, fixed realtime, fixed
output counts and fixed input counts. A fixed livetime run will execute until the specified amount of livetime has
elapsed. Similarly, a fixed realtime run will execute until the specified amount of realtime has elapsed. The fixed input
and output count runs continue until the requested number of counts have occurred. The following is an example of
setting a fixed realtime run for 5 seconds, including how to poll the device waiting for the run to complete:

int status;

double realtime = 5.0;

double realtimeType = XIA PRESET FIXED REALTIME;
double presetDatal2];

unsigned short clearMCA = 0;

unsigned short runActive;

presetData[0] = realtimeType;
presetDatall] realtime;

status = xiaBoardOperation (0, “set preset”, (void *)presetData);
CHECK ERROR (status) ;

status = xiaStartRun (0, clearMCA);

CHECK ERROR (status) ;

do {
Sleep (1)
status = xiaGetRunData (0, “run active”, (void *)&runActive);
CHECK ERROR (status) ;
} while (runActive);

/* Once the run is no longer active, we know that the preset run has completed
and that it is safe to stop the run. */

VICO-DP Handel DLL Quick Start Page 6

KETEK

status = xiaStopRun (0) ;
CHECK ERROR (status) ;
/* Read out the spectrum, etc. */

A NOTE

Please note that the livetime value corresponds to the fast filter and not the energy filter. Further the livetime
preset run would stop as soon as the livetime of the fast filter has reached the selected value.
It is not possible to set a livetime preset of the energy filter.

9 Cleaning Up

Before exiting Handel, call xiaExit() to safely shutdown the communication channel:
int status;

status = xiaExit () ;
CHECK ERROR (status) ;

October 30th, 2020 Rev. 1.1 Page 7

10 Example code

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

#include “handel.h”

#include “handel errors.h”
#include “md generic.h”
#include “handel constants.h”
/* For Sleep */

#include <windows.h>

#define MAX PTS 24

static void CHECK ERROR (int status);

static void CHECK MEM(void *mem) ;

static void print array(int n, unsigned long *vec);

static void save spectrum to textfile(int n, unsigned long *array);
static void log message (char *message, void *message value);

int main(int argc, char *argv([])
{

int status;

int 1i;

unsigned short ignored = 0;

/* Acquisition Values */
double nMCA = 4096.0;
double thresh 25.0;
double gain 5.700;
double currentGENSET;
double currentPARSET;

double setGENSET = 0;
double setPARSET 35

/* After setting the GENSET and PARSET, it is recommended to save the co-
niguration with the same value */

unsigned short saveGENSET = (unsigned short) setGENSET;
unsigned short savePARSET = (unsigned short) setPARSET;
unsigned short numberPeakingTimes = 0;

unsigned long mcalen = 0;

unsigned long *mca = NULL;

double *peakingTimes = NULL;

VICO-DP Handel DLL Quick Start Page 8

/* Fixed Realtime Variables */

double realtime = 10; //in seconds
double realtimeType = XIA PRESET FIXED REAL;
double presetDatal2];

unsigned short clearMCA = 0;

unsigned short runActive;

presetData[0] = realtimeType;
presetData[l] = realtime;

/* RunData */

double runtime = 0;

unsigned long events in run = 0;

double all statistics [6];

/* Setup logging here */

printf (“Configuring the Handel log file.\n”);
xiaSetLogLevel (MD WARNING) ;

xiaSetLogOutput (Yhandel.log”) ;

/* Load ini file */

printf (“Loading the .ini file.\n”);
status = xiaInit (“DPP2.ini”);
CHECK ERROR (status) ;

xiaSetIOPriority(MD IO PRI HIGH) ;

status = xiaStartSystem() ;
CHECK ERROR (status) ;

/* Set PARSET and GENSET */
status = xiaSetAcquisitionValues (0, “parset”, (void *)&setPARSET) ;

CHECK ERROR (status) ;

status = xiaSetAcquisitionValues (0, “genset”, (void *) &setGENSET) ;
CHECK ERROR (status) ;

/* Modify some acquisition values */

status = xiaSetAcquisitionValues (0, “number mca channels”, &nMCA);
CHECK ERROR (status) ;

status = xiaSetAcquisitionValues (0, “trigger threshold”, &thresh);
CHECK ERROR (status) ;

status = xiaSetAcquisitionValues (0, “gain”, &gain);

CHECK ERROR (status) ;

/* Apply changes to parameters */
status = xiaBoardOperation (0, “apply”, (void *)&ignored);

/* Save the settings to the current GENSET and PARSET */

status = xiaGetAcquisitionValues (0, “genset”, ¤tGENSET) ;
CHECK ERROR (status) ;

October 30th, 2020 Rev. 1.1 Page 9

KETEK

/* Check if current settings are equal to the chosen ones */
printf (“Current GENSET = $1f\n”, currentGENSET) ;

status = xiaGetAcquisitionValues (0, “parset”, ¤tPARSET) ;
CHECK ERROR (status) ;

printf (“Current PARSET= $1f\n”, currentPARSET) ;

if (currentPARSET == setPARSET && currentGENSET == setGENSET)
{
status = xiaBoardOperation (0, “save genset”, &saveGENSET) ;
CHECK ERROR (status) ;
status = xiaBoardOperation(0, “save parset”, &savePARSET);

CHECK ERROR (status) ;

/* Print out the current peaking times */

status = xiaBoardOperation (0, “get number pt per fippi”, &numberPeaking-
Times) ;

CHECK ERROR (status) ;

peakingTimes = (double *)malloc (numberPeakingTimes * sizeof (double));
CHECK MEM (peakingTimes) ;

status = xiaBoardOperation (0, “get current peaking times”, peakingTimes);

CHECK ERROR (status) ;

for (i = 0; i < MAX PTS; i++)
{

printf (“peaking time %d = $1f\n”, i, peakingTimes[i]);

/* Fixed Realtime */
status = xiaBoardOperation (0, “set preset”, (void *)presetData);
CHECK ERROR (status) ;
status = xiaStartRun (0, clearMCA) ;
printf (“Started run. Sleeping...\n”);
CHECK ERROR (status) ;
do
{
Sleep (1)
status = xiaGetRunData (0, “run active”, (void *)é&runActive);
CHECK ERROR (status) ;
} while (runActive):;

/* Once the run is no longer active, we know that the preset run has com-
pleted and that it is safe to stop the run. */

status = xiaStopRun (0) ;

CHECK ERROR (status) ;

/* Prepare to read out MCA spectrum */

status = xiaGetRunData (0, “mca length”, &mcalen);
CHECK ERROR (status) ;

VICO-DP Handel DLL Quick Start Page 10

KETEK

if (mcaLen > 0)

{
printf (“Got run data\n”);

/* If you don’t want to dynamically allocate memory here,
then be sure to declare mca as an array of length 8192,
since that is the maximum length of the spectrum. */

mca = (unsigned long *)malloc (mcalen * sizeof (unsigned long));
CHECK_MEM (mca) ;
status = xiaGetRunData (0, “mca”, (void *)mca);

CHECK ERROR (status) ;

/* Additional RunData */

status = xiaGetRunData (0, “runtime”, (void *)&runtime);
CHECK ERROR (status) ;

printf (“Runtime = $1f\n”, runtime);

log message (“Runtime = %, (void *) &runtime);

status = xiaGetRunData (0, “events in run”, (void *)é&events in run);
CHECK ERROR (status) ;

printf (“Events in Run = %$lu\n”, events in run);

status = xiaGetRunData (0, “all statistics”, (void *)all statistics);

for (1=0; 1<6; 1i++)
{
printf (“StatisticArray[%d] = %1f\n”, 1, all statistics[i]);
log message (“StatisticArray RunData = ", (void *) &all statistics[i]);

/* Print the Spectrum and save it to a textfile */
print array(mcalLen, mca);
save spectrum to textfile (mcalLen, mca);

xiaSetIOPriority (MD IO PRI NORMAL) ;
free (mca) ;
free (peakingTimes) ;

status = xiaExit () ;
CHECK ERROR (status) ;
xiaCloseLog () ;
return 0;

October 30th, 2020 Rev. 1.1 Page 11

static void CHECK ERROR (int status)
{
/* XIA SUCCESS is defined in handel errors.h */
if (status != XIA SUCCESS) {
fprintf (stderr, “Error encountered! Status = %d\n”, status);
exit (status) ;

static void CHECK MEM(void *mem)
{
if (mem == NULL) {
printf (“Memory allocation failed\n”);
exit (1) ;

static void print array(int n, unsigned long *lu array)
{
int 1i;
for (i = 0; 1 < n; i++) {
printf (“%1lu\n”, lu array[i]);
}

return;

static void log message(char *message, void *message value)
{

FILE *fptr;

fptr = fopen (“spectrum.txt”, “a”);

fprintf (fptr, “%$s”, message);

fprintf (fptr, “%1f\n”, *(double *)message value);

fclose (fptr) ;

return;

static void save spectrum to textfile(int n, unsigned long *lu array)
{
FILE *fptr;
int 1 = 0;
fptr=fopen (“spectrum.txt”,”a”);
for (i=0; 1 < n; 1i++)
{
fprintf (fptr, “%1lu”, lu arrayli]);
fprintf (fptr, ”\n”) ;
}
printf (“Successfully saved to file ‘spectrum.txt’\n”);
fclose (fptr) ;
return;

VICO-DP Handel DLL Quick Start Page 12

KETEK

11 Acquisition Values List

Below is a list of all of the supported acquisition values for the DPP2. All of the acquisition values are of type double.

parset: The current PARSET.

genset: The current GENSET.

energy_gap_time: The gap time of the energy filter, specified in us.
trigger_peak_time: The peaking time of the trigger filter, specified in ps.
trigger_gap_time: The gap time of the trigger filter, specified in us.
trigger_threshold: Trigger filter threshold in arbitrary units.

baseline_threshold: Baseline filter threshold in arbitrary units.
number_mca_channels: The number of bins in the MCA spectrum, defined in bins.

mca_bin_width: Width of an individual bin in the MCA, using the “custom” width specified in the RS-232 Com-
mand Reference.

bytes_per_bin: The number of bytes returned per bin when reading out the MCA spectrum. Can be either 1, 2
or 3 bytes.

adc_trace_wait: When acquiring an ADC trace for readout, the amount of time to wait between ADC samples,
specified in ps.

gain: The base gain in arbitrary units.
preamp_value: The reset interval for reset-type preamplifiers detectors. The reset interval is specified in ps.

gain_trim: Adjusts the base gain per PARSET, specified in arbitrary units.

For experts only:

baseline_length: The number of samples averaged together for the baseline filter.
energy_threshold: Energy filter threshold in arbitrary units.
peak_interval: The value of PEAKINT, specified in ps.

peak_interval_offset: The peak interval specified as an offset from the peaking time and gap time, specified in
us. Effectively sets PEAKINT = SLOWLEN + SLOWGAP + peak_interval_offset.

peak_sample: The value of PEAKSAM, specified in ps.

peak_sample_offset: Energy filter sampling time measured backward from the peaking time and gap time,
specified in ps. Effectively sets PEAKSAM = SLOWLEN + SLOWGAP - peak_sample_offset.

max_width: The value of MAXWIDTH, specified in ps.

12 Run Data List

These are the different types of run data that can be read using xiaGetRunData(). The C type of the run data is print-
ed in italics after the name.

mca_length (unsigned long): The number of bins in the MCA spectrum.

mca (unsigned long *): The MCA spectrum.

livetime (double): The calculated fast filter livetime, reported in seconds.

runtime (double): The runtime, reported in seconds.

input_count_rate (double): The measured input count rate, reported as counts / second.

output_count_rate (double): The output count rate, reported as counts / second.

October 30th, 2020 Rev. 1.1 Page 13

events_in_run (unsigned long): The total number of events in the current run.
triggers (unsigned long): The number of input triggers in the current run.
baseline_length (unsigned long): The current size of the baseline histogram buffer.
baseline (unsigned long *): The baseline histogram.

run_active (unsigned short): The current state of the processor: a 1 means that a run is currently active, a 0
means that no run is active.

all_statistics (double[6]) Returns an array of the six statistics available for the DPP2: livetime, runtime, triggers,
events in run, input count rate and output count rate.

13 Board Operations List

The allowed board operations for the DPP2, accessed via. xiaBoardOperation(). If no C type is specified after the op-
eration, a dummy, non-NULL value must be passed into the value argument.

get_serial_number (char[16]): Get the DPP2 board’s serial number.

get_current_peaking_times (double[5]): Get the current peaking times for the selected FiPPI, where the peak-
ing time at index i in the returned list corresponds to PARSET i for the selected FiPPI.

get_temperature (double): Returns the current temperature of the board, accurate to 1/16th of a degree of
Celsius.

apply: Applies the current DSP parameter settings to the hardware. This should be done after modifying any
acquisition values.

save_parset (unsigned short): Saves the current DSP parameter settings to the specified PARSET.
save_genset (unsigned short): Saves the current DSP parameter settings to the specified GENSET.

set_preset (double[2]): Configure a preset run by passing in the preset type and value. The allowed types,
defined in handel_constants.h are XIA_PRESET_FIXED_REALTIME, XIA_PRESET_FIXED_LIVETIME, XIA_PRESET_
FIXED_TRIGGERS, XIA_PRESET_FIXED_EVENTS. The values are defined as time in seconds, for the time based
runs and counts for the other types.

get_board_info (unsigned char[26]): Returns the array of board information listed in command 0x49 of the RS-
232 Command Reference.

get_hardware_status (unsigned char([5]): Returns the array of status information listed in command 0x4B of
the RS-232 Command Reference.

passthrough (void*[4]): Tunnels data to and from an additional microcontroller, which enables the so-called
Advanced Functions (available for selected KETEK products only). For more information refer to the dedicated
product manuals.

Handel DLL Quick Start

KETEK

14 PARSET/Acquisition Value Mapping

Shows the mapping from PARSET parameter to Handel acquisition value. Note that not all PARSET parameters can or
need to be changed from Handel and therefore do not have a corresponding acquisition value. Some PARSET values
are sensitive to the currently loaded GENSET and store one value for each GENSET. As a Handel user, you only need
to worry about setting the value; the DPP2 manages the per-GENSET values automatically.

Tab. 1 PARSET/ Acquisition Value Mapping

PARSET name Acquisition value Description

name
SLOWGAP energy_gap_time The size of the "slow" or energy filter gap.
PEAKINT peak_interval FiPPI setting
FASTLEN trigger_peak_time The length of the "fast" or trigger filter.
FASTGAP trigger_gap_time The size of the "fast" or trigger filter gap.
THRESHOLD trigger_threshold The threshold for the "fast" or trigger filter.
MAXWIDTH max_width FiPPI setting (experts only)
SLOWTHRESH energy_threshold The threshold for the "slow" or energy filter.
BASETHRESH baseline_threshold The threshold for the baseline filter.
GAINTWEAKO-4 gain_trim Adjusts the gain for this specific combination of PARSET and GENSET.

THRESHOLDO-4 trigger_threshold The trigger threshold for this specific combination of PARSET and GENSET.

BASETHRESHO-4 baseline_threshold The baseline threshold for this specific combination of PARSET and GEN-
SET.
|

15 GENSET/Acquisition Value Mapping

Tab. 2 GENSET/ Acquisition Value Mapping

GENSET name Acquisition value Description
name

MCALEN number_mca_ The number of channels in the MCA spectrum.
channels

BINGRANULAR mca_bin_width MCA bin width granularity.

GAINBASE gain The base gain setting.

A
16 GLOBSET/Acquisition Value Mapping

Tab. 3 GLOBESET/ Acquisition Value Mapping

GLOBESET name | Acquisition value Description
name

RESETINT preamp_value Reset interval for reset-type preamplifiers.

October 30th, 2020 Rev. 1.1 Page 15

17 Available Peaking Times

Tab. 4 Available Peaking Times

PARSET no. Peaking time [ps]
0 0.1
1 0.15
2 0.2
3 0.25
4 0.3
5 0.4
6 0.5
7 0.6
8 0.8
9 1
10 1.2
11 1.6
12 2
13 2.4
14 3.2
15 4
16 4.8
17 6.4
18 8
19 9.6
20 12.8
21 16
22 19.2
23 24

VICO-DP Handel DLL Quick Start Page 16

KETEK

18 Contact

If you have any questions regarding this or any of our products please do not hesitate to contact us via e-mail or
phone.

Address of our KETEK Headquarters Sales Office:

KETEK GmbH
Hofer Str. 3
81737 Munich
Germany

E-mail info@ketek.net
Phone +49 (0) 89 673467 70
Fax +49 (0) 89 673467 77
Homepage www.ketek.net

October 30th, 2020 Rev. 1.1 Page 17

mailto:info%40ketek.net?subject=
http://www.ketek.net

	Intended Audience
	Conventions Used in this Document
	Preliminary Details
	Header Files
	Error Codes
	.INI Files

	Initializing Handel
	Starting the System
	Configuring the DPP2 for Data Acquisition
	Selecting a Peaking Time
	Controlling the DPP
	Starting and Stopping a Run
	Reading out the MCA Spectrum
	Preset Length Runs

	Cleaning Up
	Example code
	Acquisition Values List
	Run Data List
	Board Operations List
	PARSET/Acquisition Value Mapping
	GENSET/Acquisition Value Mapping
	GLOBSET/Acquisition Value Mapping
	Available Peaking Times
	Contact

