
Handel Programmer’s Guide - microDXP

Contents
Intended Audience 2

Conventions Used in this Document 2

Preliminary Details 3
Header Files . 3
Error Codes . 3
.INI Files . 3
Example Code . 4

Setting up Logging 4

Initializing Handel 4

Starting the System 5

Configuring Data Acquisition 5
Select the FiPPI . 6
Setting Acquisition Values . 7
Save the GENSET/PARSET . 7
Selecting a Peaking Time . 8

Controlling the MCA 9
Starting and Stopping a Run . 9
Reading out the MCA Spectrum . 10
Preset Length runs . 10

Special Runs 11

Firmware Upgrades 12

Cleaning Up 12

Appendix A – Acquisition Values List 12
Filter . 12

1

Detector . 13
Gain . 13
MCA Data Acquisition . 14
SCA Data Acquisition . 14

Appendix B – Run Data List 14
Status . 14
Data . 14
Statistics . 15
SCA . 15

Appendix C – Board Operations List 16

Appendix D – Special Run Types List 18

Legal 19

Licenses 19
Handel . 19
Documentation . 20

Disclaimer 21

Patents 21

Intended Audience

This document is intended for users of the XIA microDXP hardware who would
like to interface to it using the Handel driver library. This document assumes
that users of the Handel driver library are familiar with the C programming
language.

Conventions Used in this Document

We use fixed width style to indicate source code, variables, and constants.

CHECK_ERROR is a placeholder for user-defined error handling. See the sample
code for an example of how to implement such error handling.

2

Preliminary Details

Header Files

Before introducing the details of programming with the Handel API, it is
important to discuss the relevant header files and other external details related
to Handel. The following headers must be included:

• handel.h Defines and imports all available Handel routines.
• md_generic.h Contains the constants for setting logging levels.
• handel_errors.h Error status constants including XIA_SUCCESS.
• handel_constants.h Contains the constants used for Handel calls.

Error Codes

A good programming practice with Handel is to compare the returned status
value with XIA_SUCCESS and then deal with any returned errors before proceeding.
All Handel routines (except for some of the debugging routines) return an integer
value indicating success or failure. While not discussed in great detail in this
document, Handel does provide a comprehensive logging and error reporting
mechanism that allows an error to be traced back to a specific line of code in
Handel. Details on using this system are found in the Handel API Manual.

.INI Files

The final piece of information external to the actual Handel source code is the
initialization file. The simplest way to supply the hardware configuration to
Handel is to use the supplied microDXP initialization file (udxp_std.ini). The
.ini file must specify the USB2 device or COM port used for the microDXP. To
do this, edit the line:

device_number = 0

or:

com_port = 1 * Windows
device_file = /dev/ttyS0 * Linux

and set it to the appropriate value. USB2 devices start at 0. For serial ports,
1 represents COM1 and 2 represents COM2 and so on. Linux serial ports use
device files instead of COM port numbers. The rest of the .ini file will have no
effect since all of the other settings are read from the microDXP itself. For more
details, see the comments in udxp_std.ini.

3

http://www.xia.com/Software/docs/handel/manual/handel-api.html

Example Code

Included with this document is a file called hqsg-udxp.c that illustrates all of
the lessons presented in this tutorial. hqsg-udxp.c is sample code that initializes
Handel, configures the microDXP hardware, starts a run, stops a run, reads out
the MCA spectrum and saves the current configuration to the hardware.

Setting up Logging

Handel provides a comprehensive logging and error reporting mechanism that
allows an error to be traced back to a specific line of code in Handel. To utilize
the logging system, a log file needs to be set up preferably at the beginning of
the application.

/* Direct logging to a local file, the different log levels can be found
* in md_generic.h.
*/

xiaSetLogLevel(MD_DEBUG);
xiaSetLogOutput("handel.log");

To prevent memory leak and release the file handle, the log file needs to be
closed at the end of application.

xiaCloseLog();

Initializing Handel

The first step in any program that uses Handel is to initialize the software
library. Handel provides two routines to achieve this goal: xiaInit() and xi-
aInitHandel(). The difference between these two initialization methods is that
the former requires the name of an initialization file. In fact, xiaInit() is noth-
ing more then a wrapper around the following two functions: xiaInitHandel()
and xiaLoadSystem().

/* Example1: Emulating xiaInit() using
* xiaInitHandel() and xiaLoadSystem().
*/

int status;

status = xiaInitHandel();
CHECK_ERROR(status);

status = xiaLoadSystem("handel_ini", "udxp_std.ini");
CHECK_ERROR(status);

4

https://www.xia.com/Software/docs/handel/manual/handel-api.html#xiainit
https://www.xia.com/Software/docs/handel/manual/handel-api.html#xiainithandel
https://www.xia.com/Software/docs/handel/manual/handel-api.html#xiainithandel
https://www.xia.com/Software/docs/handel/manual/handel-api.html#xiainithandel
https://www.xia.com/Software/docs/handel/manual/handel-api.html#xialoadsystem

The above example has the exact same behavior as

int status;
status = xiaInit("udxp_std.ini");
CHECK_ERROR(status);

If the configuration file to be used is known ahead of time, then calling xiaInit()
is the preferred method for initializing the library.

Starting the System

Once the initialization task has been completed, the next step is to start the
system. This process performs several operations including validating the hard-
ware information supplied in the initialization file and verifying the specified
communication interface (RS-232, for the microDXP). Calling xiaStartSystem()
is straightforward:

status = xiaStartSystem();
CHECK_ERROR(status);

Once xiaStartSystem() has been called successfully, the system is ready to
perform the standard DAQ operations such as starting a run, stopping a run,
reading out the MCA and saving parameter information.

Configuring Data Acquisition

Unlike other XIA hardware, the microDXP stores all of its firmware and operating
parameters on-board in non-volatile memory. Older versions of the microDXP
can store up to 3 FPGA configurations (FiPPIs), each corresponding to a separate
range of peaking times. Within each FiPPI peaking time range, 5 specific peaking
times and their associated configurations can be saved to a PARameter SET
(PARSET) in memory. For a microDXP configured with 3 FiPPIs, this yields a
total of 15 different peaking time configurations.

The latest versions of the microDXP have an updated FPGA design and can
store the entire range of peaking times in a single FiPPI. The updated FiPPI
stores 24 different peaking time configurations.

In addition to the PARSETs, there are two other sets: GENeral SETs (GENSET)
and GLOBal SETs (GLOBSET). The microDXP contains a total of 5 GENSETs.
The GENSETs are not tied to a specific FiPPI and the parameters in this set are
gain and spectrum related. There is a single GLOBSET which contain values
specific to the detector preamplifier, debugging and run control.

A key component of configuring the microDXP is choosing values for the various
PARSETs and GENSETs, and saving these values to non-volatile memory. As

5

https://www.xia.com/Software/docs/handel/manual/handel-api.html#xiastartsystem

illustrated in Appendix A, B and C, not all of the PARSET/GENSET parameters
map directly to acquisition values in Handel. The fact is you only need to modify
a small subset of the total number of available parameters in order to configure
the microDXP for your system.

Once the microDXP has been properly configured, your application should only
need to swap between the different PARSET/GENSET entries. Furthermore, on
power-up, the microDXP remembers which PARSET/GENSET was used last
and loads it into memory so there is no need to track PARSET/GENSET in
your application.

Now that we have a solid understanding of what the microDXP stores in memory,
let’s step through an example of how to configure a microDXP. In this example,
we want to configure the microDXP with the following settings:

• FiPPI 0
• PARSET 0
• GENSET 0
• Medium bin width granularity
• 4k spectrum
• Trigger threshold of 20
• Positive polarity detector
• Base gain of 32768
• 100 microsecond reset interval for the preamplifier

Select the FiPPI

On the latest versions of the microDXP, there is only a single FiPPI and there
is never a need to switch. Attempting to set the FiPPI to anything besides the
default value of 0 will result in an error. On older versions of the microDXP, the
FiPPI can be selected as follows:

int status;
ushort numberFippis = 0;
double fippi = 0.0;
unsigned short fippiMem = AV_MEM_FIPPI;

/* Read out supported number of FiPPI first. */
status = xiaBoardOperation(0, "get_number_of_fippis", (void *)&numberFippis);
CHECK_ERROR(status);

status = xiaSetAcquisitionValues(0, "fippi", (void*)&fippi);
CHECK_ERROR(status);

status = xiaBoardOperation(0, "apply", (void*)&fippiMem);
CHECK_ERROR(status);

6

Setting Acquisition Values

The next step is to set all of the acquisition values. It is important after
setting an acquisition value that you “apply” the new value with a call to
xiaBoardOperation().

double binWidth = 2.0;
double nMCA = 4096.0;
double threshold = 20.0;
double gain = 32768.0;
double polarity = 1.0;
double resetInt = 100.0;
unsigned short parsetAndGenset = AV_MEM_PARSET | AV_MEM_GENSET;

status = xiaSetAcquisitionValues(0, "mca_bin_width", (void *)&binWidth);
CHECK_ERROR(status);

status = xiaSetAcquisitionValues(0, "number_mca_channels", (void *)&nMCA);
CHECK_ERROR(status);

status = xiaSetAcquisitionValues(0, "trigger_threshold", (void *)&threshold);
CHECK_ERROR(status);

status = xiaSetAcquisitionValues(0, "gain", (void*)&gain);
CHECK_ERROR(status);

status = xiaSetAcquisitionValues(0, "polarity", (void *)&polarity);
CHECK_ERROR(status);

status = xiaSetAcquisitionValues(0, "preamp_value", (void *)&resetInt);
CHECK_ERROR(status);

/* Need to call "apply" after setting acquisition values. */
status = xiaBoardOperation(0, "apply", (void*)&parsetAndGenset);
CHECK_ERROR(status);

Note that the apply operation specifies which section of the microDXP’s memory
needs to be applied. When switching to a different FiPPI you need to call xiaBoar-
dOperation(“apply”) with the AV_MEM_FIPPI flag; when you modify PARSET,
GENSET or GLOBSET acquisition values you need to use AV_MEM_PARSET,
AV_MEM_GENSET, AV_MEM_GLOB or some combination therein.

Save the GENSET/PARSET

Now that we have configured the device and are happy with our settings, we
want to save the parameters so that we can return to this state again.

7

https://www.xia.com/Software/docs/handel/manual/handel-api.html#xiaboardoperation

unsigned short genset = 0;
unsigned short parset = 0;

status = xiaBoardOperation(0, "save_genset", (void *)&genset);
CHECK_ERROR(status);

status = xiaBoardOperation(0, "save_parset", (void *)&parset);
CHECK_ERROR(status);

Selecting a Peaking Time

In the previous code we simply saved our configuration to PARSET 0 for FiPPI
0 without any explanation of what PARSET 0 corresponds to. Each of the
PARSETs are equal to a different peaking time. To discover what peaking times
are available for the selected FiPPI, use the following code:

int status;
int i;
double *peakingTimes = NULL;

/* Read out number of peaking times to pre-allocate peaking time array */
status = xiaBoardOperation(0, "get_number_pt_per_fippi", &numberPeakingTimes);
CHECK_ERROR(status);

peakingTimes = (double *)malloc(numberPeakingTimes * sizeof(double));
CHECK_MEM(peakingTimes);

status = xiaBoardOperation(0, "get_current_peaking_times", peakingTimes);
CHECK_ERROR(status);

/* Print out the current peaking times */
for (i = 0; i < numberPeakingTimes; i++) {

printf("peaking time %d = %lf\n", i, peakingTimes[i]);
}

free(peakingTimes);

where i corresponds to the PARSET responsible for that peaking time. To switch
to peaking time/PARSET i, simply do:

double parset = (double)i;
status = xiaSetAcquisitionValues(0, "parset", (void *)&parset);
CHECK_ERROR(status);

In some applications, it may be useful to cache all the available peaking times for
the board, so that additional readout can be skipped when user select a different
FiPPI on the board.

8

/* Read out number of fippis to pre-allocate peaking time array */
status = xiaBoardOperation(0, "get_number_of_fippis", &numberFippis);
CHECK_ERROR(status);

peakingTimes = (double *)malloc(numberPeakingTimes * numberFippis * sizeof(double));
CHECK_MEM(peakingTimes);

status = xiaBoardOperation(0, "get_peaking_times", peakingTimes);
CHECK_ERROR(status);

/* Print out the current peaking times */
for (i = 0; i < numberPeakingTimes * numberFippis; i++) {

printf("peaking time %d = %lf\n", i, peakingTimes[i]);
}

free(peakingTimes);

Controlling the MCA

Once the microDXP is properly configured, it is ready to begin data acquisition
tasks. This section discusses starting a run, stopping a run, reading out the
MCA spectrum and, lastly, configuring the microDXP for preset length runs.

Starting and Stopping a Run

The Handel interface to starting and stopping the run are two simple routines: xi-
aStartRun() and xiaStopRun(). Both routines require a detector channel number
(like xiaSetAcquisitionValues()) as their first argument, while xiaStartRun()
also requires an unsigned short that determines if the MCA is to be cleared
when the run is started. To start a run with the MCA cleared, run for 5 seconds
and then stop the run, the following code may be used:

int status;
unsigned short clearMCA = 0;

status = xiaStartRun(0, clearMCA);
CHECK_ERROR(status);

/* Windows API call. Use your platform's sleep API to wait.
*/

Sleep((DWORD)5000);

status = xiaStopRun(0);
CHECK_ERROR(status);

9

https://www.xia.com/Software/docs/handel/manual/handel-api.html#xiastartrun
https://www.xia.com/Software/docs/handel/manual/handel-api.html#xiastartrun
https://www.xia.com/Software/docs/handel/manual/handel-api.html#xiastoprun
https://www.xia.com/Software/docs/handel/manual/handel-api.html#xiasetacquisitionvalues

For historical reasons, Handel and the microDXP RS-232 command
for starting a run have a different idea of how to interpret the clear
MCA value. The RS-232 command uses 0 to mean “resume run” and
1 to mean “clear the MCA”. Handel uses 0 to mean “clear the MCA”
and 1 to mean “resume run”.

Reading out the MCA Spectrum

Assuming that we are still running with FiPPI 0 and the PARSET 0 configuration
from the previous section, we know that our MCA spectrum length is 4096. In
order to reduce the number of bytes that have to be sent across the serial port
connection, you can request either 1, 2, or 3 bytes per bin. The default setting
in Handel is 3 bytes per bin, which is the same as the raw value stored in the
DSP’s memory. If you want to use 3 bytes per bin then you do not have to
change anything. If you want to only return a single byte per bin, then use the
following code:

double bytesPerBin = 1.0;
status = xiaSetAcquisitionValues(0, "bytes_per_bin", (void *)&bytesPerBin);
CHECK_ERROR(status);

If the number of counts in a bin exceeds the requested bytes per bin,
the microDXP does not return an error. For example, if there are
0xADCDEF counts in a bin and you read out the MCA spectrum
with bytes per bin set to 1, that bin will return 0xEF!

With the bytes per bin configured correctly, we are now ready to read out the
MCA spectrum.

unsigned long mca[4096];
status = xiaGetRunData(0, "mca", (void*)mca);
CHECK_ERROR(status);

Preset Length runs

The microDXP supports preset runs, which allow you to specify that a run stop
automatically after a certain amount of time has passed or other criteria have
been met. The four types of preset runs are fixed livetime, fixed realtime, fixed
output counts and fixed input counts. A fixed livetime run will execute until
the specified amount of livetime has elapsed. Similarly, a fixed realtime run will
execute until the specified amount of realtime has elapsed. The fixed input and
output count runs continue until the requested number of counts have occured.

The following is an example of setting a fixed realtime run for 5 seconds, including
how to poll the device waiting for the run to complete:

10

int status;
double realtime = 5.0;
double realtimeType = XIA_PRESET_FIXED_REALTIME;
double presetData[2];
unsigned short clearMCA = 0;
unsigned short runActive;

presetData[0] = realtimeType;
presetData[1] = realtime;
status = xiaBoardOperation(0, "set_preset", (void*)presetData);
CHECK_ERROR(status);

status = xiaStartRun(0, clearMCA);
CHECK_ERROR(status);

do {
Sleep((DWORD)1);
status = xiaGetRunData(0, "run_active", (void*)&runActive);
CHECK_ERROR(status);

} while (runActive);

/* Once the run is no longer active, we know that the preset run has
* completed and that it is safe to stop the run.
*/

status = xiaStopRun(0);
CHECK_ERROR(status);

/* Read out and process the spectrum. */

Special Runs

The microDXP supports several special run types for diagnosis and custom
operations. Their parameter and data type is outlined in Appendix D. The
following is an example to do a “snapshot” special run, then read out the resulting
data. The sample code hqsg-udxp-snapshot.c contains a complete operation.

int status

unsigned long mca_length;
unsigned long *mca = NULL;
double clearspectrum[1] = {0.};

status = xiaGetSpecialRunData(0, "snapshot_mca_length", &mca_length);
mca = malloc(mca_length * sizeof(unsigned long));

11

/* start a run and take snapshots */
status = xiaStartRun(-1, 0);
CHECK_ERROR(status);

status = xiaDoSpecialRun(0, "snapshot", &clearspectrum);
CHECK_ERROR(status);

status = xiaGetSpecialRunData(0, "snapshot_mca", mca);
CHECK_ERROR(status);

status = xiaStopRun(-1);
CHECK_ERROR(status);

free(mca);

Firmware Upgrades

Upgrades to the microDXP firmware still requires custom built tools in the
current Handel release. Futuer versions will support functions to handle XUP
file format.

Cleaning Up

Before exiting Handel, call xiaExit() to safely shutdown the serial port driver:

int status;
status = xiaExit();
CHECK_ERROR(status);

Appendix A – Acquisition Values List

Below is a list of all of the supported acquisition values for the microDXP. All
of the acquisition values are of type double.

Filter

parset The current PARSET.
genset The current GENSET.
fippi The current FiPPI.

12

https://www.xia.com/Software/docs/handel/manual/handel-api.html#xiaexit

clock_speed The digitizing clock in MHz. This value will be rounded to
the nearest setting supported by the hardware, which is either DSPCLK,
DSPCLK/2, DSPCLK/4 or DSPCLK/8. Not all selections are available
on all hardware.

energy_gap_time The gap time of the energy filter, specified in microseconds.
trigger_peak_time The peaking time of the trigger filter, specified in mi-

croseconds.
trigger_gap_time The gap time of the trigger filter, specified in microseconds.
baseline_length The number of samples averaged together for the baseline

filter.
trigger_threshold Trigger filter threshold in arbitrary units.
baseline_threshold Baseline filter threshold in arbitrary units.
energy_threshold Energy filter threshold in arbitrary units.
peak_interval_offset The peak interval specified as an offset from the peaking

time and gap time, specified in microseconds. Effectively sets PEAKINT
= SLOWLEN + SLOWGAP + peak_interval_offset. Added in v1.2.2.

peak_sample_offset Energy filter sampling time measured backward from
the peaking time and gap time, specified in µs.Effectively sets PEAKSAM
= SLOWLEN + SLOWGAP - peak_sample_offset. Added in v1.2.2.

max_width The value of MAXWIDTH, specified in microseconds.
peak_mode The value of PEAKINT. Sets the value of PEAKMODE to

“Peak-Sensing” (PEAKMODE=0) or “Peak-Sampling” (PEAKMODE=1).
Added in v1.2.2.

[Deprecated] peak_interval The value of PEAKINT, specified in microsec-
onds. Deprecated in v1.2.2, use peak_interval_offset instead.

[Deprecated] peak_sample The value of PEAKSAM, specified in µs. Dep-
recated in v1.2.2, use peak_sample_offset instead.

Detector

polarity The detector preamplifier polarity, where the allowed values are 0 =
negative and 1 = positive.

preamp_value Either the reset interval, for reset-type preamplifiers, or the
decay time, for RC feedback-type detectors. The reset interval is specified
in microseconds and the decay time is specified in terms of the digitization
clock period.

Gain

gain The base gain in arbitrary units.
gain_trim Adjusts the base gain per PARSET, specified in arbitrary units.

13

MCA Data Acquisition

number_mca_channels The number of bins in the MCA spectrum, defined
in bins.

mca_bin_width Width of an individual bin in the MCA, specified in eV.
bytes_per_bin The number of bytes returned per bin when reading out the

MCA spectrum. Can be either 1, 2 or 3 bytes.
adc_trace_wait When acquiring an ADC trace for readout, the amount of

time to wait between ADC samples, specified in microseconds.
auto_adjust_offset Whether the DAC will remain static until next power

cycle or re-adjusted whenever analog gain or other settings are changed.
(0: static, 1: auto adjusted).

SCA Data Acquisition

number_of_scas Sets the number of SCAs.
sca{N}_[lo|hi] The SCA limit (low or high) for the requested SCA, N,

specified as a bin number. N ranges from 0 to “number_of_scas” - 1.

Appendix B – Run Data List

These are the different types of run data that can be read using xiaGetRunData().
The C type of the run data is printed in italics after the name.

Status

run_active (unsigned long) The current state of the processor. If the value
is non-zero then a run is currently active on the channel.

Data

mca_length (unsigned long) The current size of the MCA data buffer for
the specified channel.

mca (unsigned long *) The MCA data array for the specified channel. The
caller is expected to allocate an array of length “mca_length” and pass
that in as the value parameter when retrieving the MCA data.

baseline_length (unsigned long) The current size of the baseline histogram
buffer.

baseline (unsigned long *) The baseline histogram.

14

https://www.xia.com/Software/docs/handel/manual/handel-api.html#xiagetrundata

preset_type Set the preset run type. See handel_constants.h for the constants
that can be used. The supported preset type for microDXP are:

• XIA_PRESET_FIXED_REALTIME
• XIA_PRESET_FIXED_LIVETIME
• XIA_PRESET_FIXED_TRIGGERS
• XIA_PRESET_FIXED_EVENTS

preset_value When a preset run type other then XIA_PRESET_NONE is set, this
value is either the number of counts or a time (specfied in seconds).

Statistics

energy_livetime (double) The calculated energy filter livetime, reported in
seconds.

trigger_livetime (double) The calculated trigger livetime, reported in sec-
onds.

runtime (double) The runtime, reported in seconds.
input_count_rate (double) The measured input count rate, reported as

counts / second.
output_count_rate (double) The output count rate, reported as counts /

second.
events_in_run (unsigned long) The total number of events in the current

run, implemented as the sum of the MCA bins.

triggers (unsigned long) The number of input triggers in the current run.
module_statistics_2 (double *) Returns an array containing statistics for

the module. The caller is responsible for allocating enough memory for
at least 9 elements and passing it in as the value parameter. The re-
turned data is stored in the array as follows: [runtime, trigger_livetime,
energy_livetime, triggers, events, icr, ocr, underflows, overflows]

[Deprecated] all_statistics (double[6]) Returns an array of the six statis-
tics available for the microDXP: livetime, runtime, triggers, events in run,
input count rate and output count rate. module_statistics_2 was in-
troduced to provide support for additional statistics data as a replacement
for this run data.

SCA

max_sca_length (unsigned short) Maximum number of SCA elements sup-
ported by the system. Equivalent to the number_of_scas acquisition
value.

sca_length (unsigned short) The number of elements in the SCA data buffer
for the specified channel.

15

sca (double *) The SCA data buffer for the specified channel. The caller is
expected to allocate an array of length “sca_length” and pass that in as
the value parameter when retrieving the SCA data.

Appendix C – Board Operations List

The allowed board operations for the microDXP, accessed via. xiaBoardOp-
eration(). The C type of the value parameter is printed in italics after the
name.

Note that the board operations get_number_of_fippis, get_peaking_time_ranges,
get_current_peaking_times and get_peaking_times utilize a command
that stops any active run on the current board.

get_serial_number (char[16]) Get the microDXP board’s serial number.

get_peaking_time_ranges (double *) Returns an array of doubles with
size (# of FiPPIs * 2). For each FiPPI the shortest peaking time and
longest peaking time are returned, in that order.

get_number_of_fippis (unsigned short) Gets the number of FiPPIs that
are on the board.

get_number_pt_per_fippi (unsigned short) Gets the number of peak-
ing times in each FiPPI. 5 or 24, depending on the variant.

get_current_peaking_times (double[N]) Get the current peaking times
for the selected FiPPI, where the peaking time at index i in the
returned list corresponds to PARSET i for the selected FiPPI. N is
the number of peaking times per FiPPI, retrieved via board operation
get_number_pt_per_fippi.

get_peaking_times (double[N]) Get array of all peaking times supported
by the board, in the order of peaking times for each PARSET, often used
when the peaking times need to be cached by the application. N can be de-
rived from get_number_of_fippis multiplied by get_number_pt_per_fippi.

get_temperature (double) Returns the current temperature of the board,
accurate to 1/16th of a degree of Celsius.

apply (none)1 Applies the current DSP parameter settings to the hardware.
This should be done after modifying any acquisition values.

save_parset (unsigned short) Saves the current DSP parameter settings to
the specified PARSET.

save_genset (unsigned short) Saves the current DSP parameter settings to
the specified GENSET.

16

https://www.xia.com/Software/docs/handel/manual/handel-api.html#xiaboardoperation
https://www.xia.com/Software/docs/handel/manual/handel-api.html#xiaboardoperation

[Deprecated] set_preset (double[2]) Configure a preset run by passing in
the preset type and value. The allowed types, defined in handel_constants.h
are:

• XIA_PRESET_FIXED_REALTIME
• XIA_PRESET_FIXED_LIVETIME
• XIA_PRESET_FIXED_TRIGGERS
• XIA_PRESET_FIXED_EVENTS

The values are defined as time in seconds, for the time based runs and
counts for the other types.

The acquisition values preset_type and preset_value have been imple-
mented to provide r/w access to preset run properties, and should be used
instead.

get_board_info (unsigned char[26]) Returns the array of board informa-
tion listed in command 0x49 of the RS-232 Command Reference.

The returned data is stored in the array as follows, each line representing
a byte. Although the pre-allocated size is fixed, the returned content is
dependent on the number of FiPPIs. For products with a single FiPPI,
unused bytes can be ignored.

0. PIC Code Variant
1. PIC Code Major Version
2. PIC Code Minor Version
3. DSP Code Variant
4. DSP Code Major Version
5. DSP Code Minor Version
6. DSP Clock Speed
7. Clock Enable Register
8. Number of FiPPIs
9. Gain Mode

10. Gain (mantissa low byte)
11. Gain (mantissa high byte)
12. Gain (exponent)
13. Nyquist Filter
14. ADC Speed Grade
15. FPGA Speed
16. Analog Power Supply
17. FiPPI 0 Decimation
18. FiPPI 0 Version
19. FiPPI 0 Variant

Bytes 20-25 repeat the FiPPI pattern for 1 and 2, if available.

get_usb_version (unsigned long) Returns the USB firmware version num-
ber packed into an unsigned long as follows: [3]Major [2]Minor [1]Reserved
[0]Build. Offsets refer to byte indexes in the unsigned long. For example,

17

the following expression may be used to get the major version: (value >>
24) & 0xFF.

This operation is only supported for microDXP firmware Rev H or later
and the UltraLo.

get_preamp_type (unsigned short) Returns the current preamplifier type,
where 0 = reset and 1 = RC feedback.

set_xup_backup_path (char *) Sets the path where XUP backups are
written.

get_hardware_status (unsigned char[5]) Returns the array of status in-
formation listed in command 0x4B of the RS-232 Command Reference.

passthrough ({byte*, int*, byte*, int*}) Pass a command through to a
UART attached to the processor. This command requires custom hardware
and firmware and is not supported on all variants. If the variant does not
implement the custom command, xiaBoardOperation will return a Handel
error code.

The value type is void**, an array pointing to the following elements:

• byte* send: an array of bytes to send with the command.
• int* send length: number of bytes in the send array.
• byte* receive: an array of bytes to return the command response.
• int* receive length: number of bytes to read in the command response.

Sample usage:

byte send[32] = {1, 2, 3};
int send_len = sizeof(send) / sizeof(send[0]);
byte receive[32] = {0};
int receive_len = sizeof(receive) / sizeof(receive[0]);
void* value[4] = {send, &send_len, receive, &receive_len};

int status = xiaBoardOperation(0, "passthrough", value);
CHECK_ERROR(status);

/* Process receive... */

Appendix D – Special Run Types List

This section lists the special runs supported by xiaDoSpecialRun for microDXP
applications.

Each special run accepts a different set of parameters via the info array. The
Read Data column indicates if corresponding xiaGetSpecialRunData() data are
available to be read out.

18

https://www.xia.com/Software/docs/handel/manual/handel-api.html#xiagetspecialrundata

Name Read Data? Type Info Description
adjust_offsets N/A double info[0]: ADC Offset to adjust acceptable range 0-16383 (14-bit ADC) rc_feedback detector type only: Adjusts the Offset DAC iteratively to match the baseline ADC value to the user setting. If ADC Offset = 0, DAC is just set to mid-range value (0x8000).
adc_trace Yes double info[1]: Amount of time to wait between ADC samples in nanoseconds. Acquire an ADC trace. An ADC trace is the digitzed output of the preamplifier (after being processed by the DXP’s Analog Signal Conditioner). This is also known as the Digital Oscilloscope mode.
snapshot Yes double info[0]: Option to clear spectrum memory 0: no action 1: clear memory after taking snapshot. Take snapshot of MCA contents and statistics. Allows readout of stable MCA spectrum during data acquisition. Only supported if MCA length is 4096 bins or less.

Below is the table of special run data that can be read by xiaGetSpecialRunData:

Name Type Description
adc_trace_length unsigned long The length of the ADC trace to be read from the processor in unsigned long words.
adc_trace unsigned long * An array containing the data from “adc_trace” special run. The user is expected to pass in an array of size “adc_trace_info” to Handel.
snapshot_mca_length unsigned long The length of the snapshot_mca buffer to be read from the processor in unsigned long words.
snapshot_mca unsigned long * An array containing the snapshot MCA data from “snapshot” special run. The user is expected to pass in a pre-allocated array.
snapshot_statistics_length unsigned long The length of snapshot statistics, as number of doubles.
snapshot_statistics double * An array containing snapshot statistics from “snapshot” special run, in the same sequence as module_statistics_2 run data. The user is expected to pass in a pre-allocated array.
snapshot_sca_length unsigned long The length of the snapshot_sca buffer, as number of doubles.
snapshot_sca double * An array containing the snapshot SCA data from “snapshot” special run. The user is expected to pass in a pre-allocated array.

Legal

Copyright 2005-2018 XIA LLC

All rights reserved

All trademarks and brands are property of their respective owners.

Licenses

Handel

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copy-
right notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.

• Neither the name of XIA LLC nor the names of its contributors
may be used to endorse or promote products derived from this
software without specific prior written permission.

19

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS
AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Documentation

Redistribution and use in source (Markdown) and ‘compiled’ forms (HTML,
PDF, LaTeX and so forth) with or without modification, are permitted provided
that the following conditions are met:

• Redistributions of source code (Markdown) must retain the
above copyright notice, this list of conditions and the following
disclaimer as the first lines of this file unmodified.

• Redistributions in compiled form (transformed to other DTDs,
converted to PDF, PostScript, HTML, LaTeX, RTF and other
formats) must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS DOCUMENTATION IS PROVIDED BY XIA LLC “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FIT-
NESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL XIA LLC BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTER-
RUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANYWAY OUT OF THE USE
OF THIS DOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

20

Disclaimer

Information furnished by XIA LLC is believed to be accurate and reliable.
However, XIA assumes no responsibility for its use, nor any infringements of
patents or other rights of third parties, which may result from its use. No license
is granted by implication or otherwise under any patent or patent rights of
XIA. XIA reserves the right to change specifications at any time without notice.
Patents have been applied for to cover various aspects of the design of the DXP
Digital X-ray Processor.

Patents

Patent Notice

21

http://www.xia.com/patents

	Intended Audience
	Conventions Used in this Document
	Preliminary Details
	Header Files
	Error Codes
	.INI Files
	Example Code

	Setting up Logging
	Initializing Handel
	Starting the System
	Configuring Data Acquisition
	Select the FiPPI
	Setting Acquisition Values
	Save the GENSET/PARSET
	Selecting a Peaking Time

	Controlling the MCA
	Starting and Stopping a Run
	Reading out the MCA Spectrum
	Preset Length runs

	Special Runs
	Firmware Upgrades
	Cleaning Up
	Appendix A – Acquisition Values List
	Filter
	Detector
	Gain
	MCA Data Acquisition
	SCA Data Acquisition

	Appendix B – Run Data List
	Status
	Data
	Statistics
	SCA

	Appendix C – Board Operations List
	Appendix D – Special Run Types List
	Legal
	Licenses
	Handel
	Documentation

	Disclaimer
	Patents

