
Handel API Manual

Contents

Handel: XIA Hardware Description Layer

XIA LLC

http://www.xia.com

support@xia.com

Introduction

This document is intended to aid the data collection programmer in developing
software that controls and reads out data from all XIA x-ray processors. Handel
provides a high level interface to the hardware, requiring as little knowledge
about the hardware as is reasonable by the end-user.

The Handel library is written in ANSI C and has no dependencies other than
the C standard library and hardware device drivers. XIA provides device drivers
for Windows. Device driver availability on other platforms varies and depends
in part on end user implementation. See Platform Support.

The organization of this document is as follows:

• Technical Support provides links and addresses for software updates and
contacting XIA.

• Platform Support describes the operating system platforms for which
Handel is released and built.

• Acquiring Handel gets you started with acquiring the libraries and/or
source code.

• Building Handel describes the build environment.
• Header Files lists the headers you should include in your C/C++ program.
• Terms introduces some terms that are used throughout this document.
• Calling Conventions describes the calling conventions used by the routines

that are included with the host software release.
• API describes the Handel library routines.

1

http://www.xia.com
mailto:support@xia.com

• Files shows the layers of the Handel libraries.
• INI Files specifies the configuration file format.

Technical Support

Software Updates

XIA updates Handel in the course of product development and in response to bug
reports from customers. The latest source distribution and Windows binaries,
as well as several back releases, are available product-specific variants at the
Handel Release page on the XIA Support web site.

You can also obtain Handel headers and binaries from the SDK folder in your
ProSpect installation.

Email Support

If you have any questions or encounter a bug with the library, please contact
XIA by sending an email to support@xia.com with the following information:

1. Your name and organization
2. XIA hardware being used
3. Operating system and version
4. Description of the problem and steps to re-create
5. Supporting data in the form of Handel log files or relevant plots
6. Version of the Handel library (see the top of the log file or check the DLL

file properties)
7. Other information you find relevant

License

This document is Copyright 2002-2018 XIA LLC, All rights reserved.

Information furnished by XIA is believed to be accurate and reliable. However,
no responsibility is assumed by XIA for its use, nor for any infringements of
patents or other rights of third parties which may result from its use. No license
is granted by implication or otherwise under any patent or patent rights of
XIA. XIA reserves the right to change specifications at any time without notice.
Patents have been applied for to cover various aspects of the design of the DXP
Digital X-ray Processor.

2

https://support.xia.com/default.asp?W381
mailto:support@xia.com

A majority of the Handel source code is available under a BSD-style license. The
complete text of this license is available at: http://www.opensource.org/licenses/
bsd-license.php. The main points of the license are summarized as follows:

• Redistributions of source code must retain the copyright notice provided
in the source code, this list of conditions and the disclaimer provided in
the source code.

• Redistributions in binary form must reproduce the copyright notice, this
list of conditions and the disclaimer in the documentation and/or other
materials provided with the distribution.

• Neither the name of X-ray Instrumentation Associates nor the names of
its contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

Certain sub-systems in Handel are unable to be released under the BSD-style
license. As of this writing, the microDXP drivers (corresponding to the libraries
udxp, udxps, udxp_psl and udxps_psl) and the serial port drivers on Windows
(corresponding to the seriallib library) are only available in binary form.

Additionally, third-party modules required by Handel are available in binary
format only. The 3rd-party modules included in the distribution are: cdrvdl32.dll,
cdrvhf32.dll, cdrvxf32.dll, and xw.dll.

Platform Support

The Handel library is programmed in C99 using only the standard library and
compiles on various platforms using common C compilers such as msvc, gcc, and
clang.

Support for particular platforms depends on availability of device drivers and
may require end user implementation to adapt device drivers to the machine-
dependent (MD) layer of Handel.

XIA provides full support for all x-ray products on Windows, including device
drivers, graphical configuration and control applications, and technical support.

The Handel source release includes a Linux MD implementation for USB (built
on libusb-0.1), EPP (sys/io), and serial interfaces (termios) to support USB- and
EPP-based Mercury, Saturn, and microDXP spectrometers. The Linux serial
interface is experimental but passes all internal tests at XIA using microDXP
Rev H. While PLX drivers are available for Linux from National Instruments,
installation support and MD hooks implementation must be supplied by the
user.

Use of other platforms requires a full implementation of the MD layer supplied
by the user. Given knowledge of the device driver interface for a given device,

3

http://www.opensource.org/licenses/bsd-license.php
http://www.opensource.org/licenses/bsd-license.php

implementing the MD layer is a straightforward process of writing open, close,
read, and write hooks and a bit of bookkeeping to store and map device handles
to Handel modules. See md_win32.c and md_linux.c in the source distribution
for reference implementations. Per the Handel license, users are welcome to
keeep their implementations closed source. If you wish to contribute device
driver support to the official Handel release, please email support@xia.com.

Note to microDXP users: While the Handel library provides high
level control to nearly all settings and acquisition control, given the
suitability of the microDXP for embedded applications, it can also be
controlled via RS-232 with no additional software requirements. See
the microDXP manuals for more information about the microDXP
architecture and a downloadable RS-232 command specification.

Control System Integration

Handel is integrated with the open source EPICS system via the EPICS DXP
(xMAP, Mercury, Saturn, microDXP) and EPICS dxpSITORO (FalconX) mod-
ules.

A Python wrapper and zerorpc-based network interface are available via the
Bliss python-handel library.

Acquiring Handel

If you have XIA configuration and control software such as ProSpect installed,
you already have the libraries and you may already have the source. Go to
C:\Program Files (x86)\XIA and look for an sdk or lib directory under the
application directory.

Otherwise, you can download ProSpect with compiled Windows libraries from
our web site. Visit http://www.xia.com/products.html, click through the XIA
product you’re working with, and follow the Downloads link.

To download the complete Handel source package, visit Handel Release page
and download the latest version for your product.

Linux

XIA does not provide a standalone binary distribution for users running on
Linux OS’s. Linux users will need to follow the instructions in Building Handel
for compiling the libraries from source code.

4

mailto:support@xia.com
http://www.xia.com/microDXP_Downloads.html#Manuals
http://cars9.uchicago.edu/software/epics/dxpDoc.html
http://cars.uchicago.edu/software/epics/dxpSITORO.html
https://gitlab.esrf.fr/bliss/python-handel
http://www.xia.com/products.html
https://support.xia.com/default.asp?W381

Building Handel

Most Windows users will simply use the compiled libraries from our web site.
However, for Linux or other platforms, you will need to compile from source.
This section describes the build requirements and environment.

Requirements

Windows

Handel is developed on Windows 10 and tested on Windows 7 SP1. It is expected
to work back through Vista and XP SP3. Handel may run on earlier versions of
Windows, but we do not officially support this.

The Windows versions of Handel are compiled using Microsoft’s cl compiler and
link linker from Visual C++ 2010 for both x86 and x64 architectures.

Linux

We don’t maintain an up-to-date list of supported Linux distributions, but most
modern ones should work fine. Handel is compiled and tested Ubuntu 14.04.
The build system is configured to work with the standard GNU make and gcc
toolchain.

Build Environment

The build system is SCons with extension from swtoolkit. The SCons build
supports Windows and Linux. While we do provide the SCons files in the source
package, most customers prefer to work with their own Makefiles. If you wish to
use the SCons build, consult README.linux.txt in the source distribution for
more details on setting up SCons and swtoolkit.

A major goal of XIA’s build system is to allow custom Handel configurations to
be built. For instance, it is possible to build a Mercury-only version of Handel
or a version that only supports PXI products.

By default (calling the swtoolkit hammer wrapper with no flags), the build
system builds all of the protocols and products supported on the host platform
for all architectures (x86 and x64). To specify different products, protocols and
products, invoke make using the following syntax:

hammer [--[no-]<product>] [--[no-]<protocol>] [<library>]

See the top section of the file main.scons for a list of supported products and
protocols. Call hammer --help for a list of libraries that can be built.

When a protocol is excluded from the build, all of the products that use the
protocol are also removed from the build. For instance, if you invoke hammer

5

with the option –no-serial, both of the microDXP drivers (udxp and udxps) are
removed from the system as well as the serial port drivers.

Header Files

This section assumes you are using the Handel libraries in a C or
C++ programming environment.

handel.h is the main header file for the Handel libraries and should be included
in every source file that calls a Handel library function. This header contains
prototypes for all of the exported Handel functions and some useful constants.

handel_errors.h contains all of the error codes and a short comment describing
the meaning of each error code. The constants in this file can be used to create
descriptive error handling in source code. For instance:

#include "handel.h"
#include "handel_errors.h"

int status;
status = xiaInitHandel();

else if (status == XIA_NOMEM) {
printf("Out-of-memory!\n");

}
else if (status == XIA_SUCCESS) {

printf("Success!\n");
}

If you choose not to interpret all possible returned error values, XIA highly
recommends at least checking the returned status against the constant
#XIA_SUCCESS. All of the routines in Handel follow the standard of returning
an integer value indicating the success or failure of the routine.

int status;
status = xiaInitHandel();
if (status != XIA_SUCCESS) {

printf("ERROR = %d\n", status);
abort();

}

status = xiaStartSystem();
if (status != XIA_SUCCESS) {

printf("ERROR = %d\n", status);
abort();

}

6

Handel may not be in a consistent state if a routine fails. If ex-
ecution continues with the next Handel call, the behavior will be
indeterminate and may result in unexpected application errors

handeldef.h defines HANDEL_IMPORT, which is used in handel.h to define the API
routines. This file does not need to be included directly since handel.h includes
it, but it does need to be in the same directory as your other Handel header files.

handel_generic.h defines constants like MAXALIAS_LEN, used for allocating mem-
ory to pass to Handel routines.

Include md_generic.h if you are going to use the constants associated with
xiaSetLogLevel(): MD_ERROR, MD_WARNING, MD_INFO, and MD_DEBUG.

Linking

Handel is built as a shared library. Both the ProSpect SDK and the Handel
binary distribution provide the necessary import libraries and headers for linking
the libraries directly into your application. Similarly, building Handel using
XIA’s scons build ensures that the necessary import libraries will be created.

Terms

detChan A global value unique to each channel in the system. The detChan
value is used to reference a channel independent of the module it is asso-
ciated with. Furthermore, detChans may be grouped into detChan sets
that are also given a unique value and may be used with most routines
that accept a detChan as an argument. Additionally, detChan sets may
reference both single detChans and other detChan sets, provided that none
of the detChans refer back to the original set. Handel checks the integrity
of the detChans and warns the user if it detects an infinite loop.

Driver Libraries Each XIA product requires two driver libraries: one that
interfaces to the hardware at a low level (device-driver) and one that
provides the device specific implementations. (PSL driver).

DSP This is the on-board digital signal processor (DSP) that controls the spec-
trometer functions and some general run functions. The DSP also contains
memory for storing spectra, diagnostics, control words and an internal
work area. The host computer must download a program to the DSP prior
to starting tasks on the XIA processor. This device is complicated and
XIA provides programming manuals for custom applications. A “standard”
DSP program is provided with all XIA processors.

Firmware Definition Database (FDD) XIA will release firmware in special
files created for Handel, called FDD files. Each file will contain all of the

7

Firmware code required to configure and run an XIA processor. Special
firmware will be distributed as FDDs separate from the general distribution.

FiPPI This is the field programmable gate array (FPGA) in which the Filter,
Peak detection, Pileup Inspection logic is implemented. Like the DSP, a
configuration file must be downloaded to the FiPPI before it can function.

Firmware Firmware refers to all FPGA(s) and DSP(s) on the XIA processors.
When power is initially applied to an XIA processor, it has only enough
firmware loaded to handle communication via the hardware interface; the
rest of the firmware must be downloaded to the XIA processor prior to
starting tasks.

System Chip/Memory Manager This is another FPGA that is present on
some XIA processors. Its function is to control miscellaneous chips on the
processor such as SRAM and FIREWIRE interfaces. As XIA processors
evolve additional FPGAs may be added.

Hardware interface This is the method that each XIA module uses to com-
municate with the host computer. We currently support USB2 and serial
ports on most Linux and Windows operating systems. PLX is supported
on Windows. USB1 and EPP support remain in the codebase but are no
longer tested by XIA.

Host This is the computer on which the data collection program runs and
collects data via some hardware interface to the XIA device.

.ini File The .ini file is used by Handel to initialize the system, several options
for initializing are available and discussed later in this document.

Module XIA product with at least one channel associated with it.

Product-specific Layer (PSL) A set of libraries that libraries contain the
individual logic associated with each product. Host software should never
call these libraries directly.

Read Transfer data from the XIA processor to the host computer.

Write Transfer data from the host computer to the XIA processor.

Calling Conventions

Language Interface

Handel is supported for calls from other C programs or libraries. XIA does not
officially support other language interfaces such as Visual Basic or Fortran, but
we provide sample C# interop definitions in the examples folder of the source
distribution.

8

Integer Functions

If successful, all Handel routines return #XIA_SUCCESS, otherwise they return
a status code indicating a problem (see handel_errors.h for error codes). In
addition, all routines that sense an error print a message to either stdout (the
default setting) or to the stream indicated by a call to xiaSetLogOutput(). This
has the effect of producing a trace-back for identifying where a problem occurred.

Word Size

Handel APIs use standard integer types, not fixed width integer types. When
interfacing to the driver library from languages other than C, the user must be
careful to match the length of variable types across compilers.

For the x86 architecture, the word size is as follows:

• short/unsigned short = 2 bytes
• int/unsigned int = 4 bytes long/unsigned
• long = 4 bytes

DSP parameters are of length 2 bytes.

Searching For Files

Handel follows a standard search procedure when trying to find a file specified
by the user:

1. Attempt to open the file in the current directory.

2. Attempt to open the file in the directory pointed to by the environment
variable XIAHOME.

3. Attempt to open the file in the directory pointed to by the environment
variable DXPHOME. (This is only for backwards compatibility with previous
XIA libraries and should not be used.)

4. Interpret the filename as an environment variable that points to a different
file.

5. Interpret the filename as an environment variable that points to a different
file located in the directory pointed to by the environment variable XIAHOME.

6. Interpret the filename as an environment variable that points to a different
file located in the directory pointed to by DXPHOME.

If all of the search steps fail then an error is returned.

9

Files

Handel is a framework of several libraries that interact to create the interface
Handel provides.

The Handel layer (handel.dll) contains the xia* routines you will call. These
routines are the focus of the API section.

Lower layers are for internal use. (Many of these were formerly distributed as
separate DLLs but are now statically linked into Handel.dll.)

• Product Specific Layer (PSL) (saturn_psl, xmap_psl, etc.): product
specific acquisition values, run types, run data types, and board operations.

• XerXes (xerxes): Formerly the public API for spectrometer control, now
an internal dependency used by the PSL.

• Device driver layer (saturn, xmap, etc.): Device-level communication and
utilities.

• Machine dependent (MD) (md, md_win32, md_linux, etc.): Operating
system-level utilities. An implementation of the MD routines is needed
for each platform Handel runs on. XIA provides full support for Windows
(md_win32.c) and minimal support for Linux (md_linux.c). Patches are
welcome to flesh out support for Linux or other operating systems.

• Protocol layer (xia_usb2.dll, xia_plx.dll): System device driver wrappers
for the protocols supported by Handel.

INI File Format

Handel .ini files contain all the information needed to restore a system to an exact
known configuration across program invocations and different host computers. A
typical use case is to optimize a configuration for a particular detector type and
spectrometer using XIA software such as ProSpect, and then save the system
for later use in loading into your own application via Handel. See System for
the APIs used to load and save .ini files.

Handel uses the standard .ini file format of bracketed section headings ([Section])
followed by name-value pairs that define information for that section. Handel
extends this format by allowing multiple aliases to be specifed under a single
section heading. Each alias and its information is surrounded by the START \#n
and END \#n keywords. A comment line is denoted by a "*" character at the
start of a line.

The allowed section headings are “detector definitions”, “firmware definitions”
and “module definitions”. Additionally, there is a section heading called “default
definitions” that is generated by Handel. Users who are creating an .ini file from

10

scratch should not include the “default definitions” section. Furthermore, the
default_chan{n} value, in the “module definitions” section should also be left
out since Handel will generate it automatically.

Detector

[detector definitions]
START #1
alias = detector1
number_of_channels = 1
type = reset
type_value = 10.0
channel0_gain = 6.6
channel0_polarity = +
END #1

START#2
alias = detector2
number_of_channels = 1
etc..
END #2

... START #3 etc...

Firmware

[firmware definitions]

* This firmware definition uses an FDD
START #1
alias = firmware1
filename = saturn_std.fdd
num_keywords = 0
END #1

* This firmware definition uses PTRRs
START #2
alias = firmware2
ptrr = 0
min_peaking_time = .25
max_peaking_time = 1.25
fippi = fxpd0g.fip
dsp = saturn.hex
num_filter = 2

11

filter_info0 = 2
filter_info1 = 2
ptrr = 1
min_peaking_time = 1.251
max_peaking_time = 5.0
fippi = fxpd2g.fip
dsp = saturn.hex
num_filter = 2
filter_info1 = 2
filter_info1 = 2
END #2

... START #3 etc...

Module

[module definitions]
START #1
alias = module1
module_type = saturn
number_of_channels = 1
interface = epp
epp_address = 0x378
channel0_alias = 0
channel0_detector = detector1:0
channel0_gain = 1.0
firmware_set_all = firmware1
END #1

... START #2 etc...

API

This section documents the public Handel API, divided into groups by function-
ality.

• Initializing Handel: initializing the library
• Detectors: querying detectors
• Firmware: querying firmware sets
• Modules: querying modules
• System: starting the system
• Run Params: setting and getting run parameters
• Run Control: starting and stopping runs and reading out data
• System Configuration: load and saving the system configuration

12

• Logging: configuring Handel’s internal logging

Initializing Handel

Handel uses four global structures to manage a DAQ system: Detector, Firmware,
Acquisition Values and Module information. The system is configured by calling
xiaInit() and passing the name of a preconfigured .ini file. XIA software applica-
tions such as ProSpect save configurations for use in this manner. See INI Files
for the file format specification.

• xiaInit()
• xiaInitHandel()
• xiaExit()
• xiaGetVersionInfo()

xiaInit()

int xiaInit(char *iniFile)

Initializes the Handel library and loads in an .ini file. The functionality of this
routine can be emulated by calling xiaInitHandel() followed by xiaLoadSys-
tem()(“handel_ini”, iniFile). Either this routine or xiaInitHandel must be
called prior to using the other Handel routines.

Parameters:

iniFile Name of the configuration file to be loaded. This name may be an
absolute or relative path and is located according to the conventions in
Calling Conventions.

Return Codes:

Code Description
XIA_NOMEM Internal Handel error. Contact XIA.
XIA_OPEN_FILE Unable to open specified .ini file.

Usage:

int status;
status = xiaInit("myFile.ini");
if (status != XIA_SUCCESS) {

/* ERROR initializing library or loading .ini file */
}

13

xiaInitHandel()

int xiaInitHandel(void)

Initializes the library. Either this routine or xiaInit() must be called before any
other Handel routines are used.

Return Codes:

Code Description
XIA_NOMEM Internal Handel error. Contact XIA.

Usage:

int status;
status = xiaInitHandel();
if (status != XIA_SUCCESS) {

/* ERROR initializing Handel */
}

xiaExit()

int xiaExit(void)

Disconnects from the hardware and cleans up Handel’s internal data structures.

Return Codes:

This routine has no specific error codes of its own. If anything besides
XIA_SUCCESS is returned, check the log error output.

Usage:

int status;
status = xiaExit();
if (status != XIA_SUCCESS) {

/* ERROR cleaning up Handel */
}

xiaGetVersionInfo()

void xiaGetVersionInfo(int *rel, int *min, int *maj, char *pretty)

14

Returns Handel’s version in numeric and/or string format. If all three numeric
values rel, min, and maj are passed (non-null pointers), the three components
will be set and are typically reassembled using a syntax such as ‘maj’.’min’.’rel’.

If the string argument pretty is passed, it is filled a string preformatted for
writing to a log or display, including the numeric components and a tag indicating
special build information (a release source version hash or “development”). The
expected string length is not currently defined.

Detectors

Routines for querying information about physical detectors.

• xiaGetNumDetectors()
• xiaGetDetectors()
• xiaGetDetectors_VB()
• xiaGetDetectorItem()

xiaGetNumDetectors()

int xiaGetNumDetectors(unsigned int *numDet)

Gets the number of detectors currently defined in the system.

Parameters:

numDet User-allocated pointer to store the result.

Usage

int status;
unsigned int numDet = 0;

/* Assume that a system has already been
* created or loaded and that it defines
* two detectors.
*/

status = xiaGetNumDetectors(&numDet);

if (status != XIA_SUCCESS) {
/* ERROR getting number of detectors */

}

printf("There are currently %u detector(s) defined.\n", numDet);

15

xiaGetDetectors()

int xiaGetDetectors(char *detectors[])

Gets a list of aliases of the detectors defined in the system.

The caller must allocate for detectors. Typically this is done by
calling xiaGetNumDetectors() and using the number of detectors to
initialize a string array. Allocate a char * of length MAXALIAS_LEN
for each detector.

Parameters:

detectors A string array of the proper length: number of detectors times MAX-
ALIAS_LEN.numDet by MAXALIAS_LEN (defined in handel_generic.h).

Usage

int status;
unsigned int numDet = 0;
unsigned int i;
char **detectors = NULL;

/* Assume that a system has already been loaded. */
status = xiaGetNumDetectors(&numDet);
if (status != XIA_SUCCESS) {

/* ERROR getting number of detectors */
}

/* Allocate the memory we need for the string array */
detectors = (char **)malloc(numDet * sizeof(char *));
if (detectors == NULL) {

/* ERROR allocating memory for detectors */
}

for (i = 0; i < numDet; i++) {
detectors[i] = (char *)malloc(MAXALIAS_LEN * sizeof(char));
if (detectors[i] == NULL) {

/* ERROR allocating memory for detectors[i] */
}

}

status = xiaGetDetectors(detectors);
if (status != XIA_SUCCESS) {

/* ERROR getting detectors list */
}

16

for (i = 0; i < numDet; i++) {
printf("detectors[%u] = %s\n", i, detectors[i]);

}

for (i = 0; i < numDet; i++) {
free((void *)detectors[i]);

}

free((void *)detectors);
detectors = NULL;

xiaGetDetectors_VB()

int xiaGetDetectors_VB(unsigned int index, char *alias)

Gets a detector alias by detector index.

This routine serves as a replacement for xiaGetDetectors() for use with Visual
Basic or other languages that will not allow an array of strings to be passed
into the Handel DLL. This returns a single detector alias, where index ranges
from 0 to numDetectors-1. The standard idiom is to get the number of detectors
in the system with a call to xiaGetNumDetectors() and to then loop from 0 to
numDetectors- 1 to get all of the detector aliases in the system.

Parameters:

index Position of detector alias in system, 0-based.
alias Returns the alias of the detector located at the specified index. The

caller must allocate the proper amount of memory (char * of length
MAXALIAS_LEN.

Return Codes:

Code Description
XIA_BAD_INDEX The specified detector index is out of range.

Usage

int status;
unsigned int numDetectors = 0;
unsigned int i;
char **aliases = NULL;

17

/* Assume that a valid system has been setup */
status = xiaGetNumDetectors(&numDetectors);
if (status != XIA_SUCCESS) {

/* ERROR getting # of detectors in system */
}

/* Must allocate proper amount of memory */
aliases = (char **)malloc(numDetectors * sizeof(char *));
if (aliases == NULL) {

/* ERROR allocating memory for aliases array */
}

for (i = 0; i < numDetectors; i++) {
aliases[i] = (char *)malloc(MAXALIAS_LEN * sizeof(char));
if (aliases[i] == NULL) {

/* ERROR allocating memory for aliases[i] */
}

}

for (i = 0; i < numDetectors; i++) {
status = xiaGetDetectors(i, aliases[i]);
if (status != XIA_SUCCESS) {

/* ERROR getting detector alias at index i */
}

}

for (i = 0; i < numDetectors; i++) {
printf("Detector alias at index = %u: %s", i, aliases[i]);

}

for (i = 0; i < numDetectors; i++) {
free((void *)aliases[i]);

}

free(aliases);

xiaGetDetectorItem()

int xiaGetDetectorItem(char *alias, char *name, void *value)

Retrieves information from a detector’s configuration. All of the names listed in
below may be retrieved using this routine.

Detector Items

18

name value Type Description
number_of_channels unsigned int The number of detector elements. Must be added first.
channel{n}_gain double The preamplifier gain in mV/keV for channel n (0-based).
channel{n}_polarity char * Polarity of channel n. “+” and “pos” indicate positive polarity. “-” and “neg” indicate negative polarity.
type char * The type of preamplifier this detector has. “reset” or “rc_feedback”.
type_value double The value associated with the preamplifier type. For reset detectors pass in the value of the reset time in us. For RC feedback detectors, pass the 1/e decay time in microseconds.

Parameters:

alias A valid detector alias
name Name from the detector items table to get.
value Void pointer to the variable in which the returned data will be stored.

See the detector items list above for the correct data type to allocate for
each name.

Return Codes:

Code Description
XIA_NO_ALIAS Specified alias does not exist
XIA_BAD_VALUE value could not be converted to the required type.
XIA_BAD_NAME name is not a valid detector item.

Usage

int status;
double gain;

/* Create a detector w/ alias detector1 here and then add all of the
* the necessary information to it. We will only retrieve the gain
* here, but the others follow the same pattern.
*/

status = xiaGetDetectorItem("detector1", "channel0_gain", (void *)&gain);
if (status != XIA_SUCCESS) {

/* ERROR getting channel 0 gain */
}

printf("Gain (channel 0) = %lf\n", gain);

19

Firmware

Routines for querying information about firmware sets, firmware files, and
mappings between peaking time ranges and firmware.

• xiaGetNumFirmwareSets()
• xiaGetFirmwareSets()
• xiaGetFirmwareSets_VB()
• xiaGetNumPTRRs()
• xiaGetFirmwareItem()

xiaGetNumFirmwareSets()

int xiaGetNumFirmwareSets(unsigned int *numFirmware)

Returns the number of firmware sets defined in the system.

Parameters:

numFirmware Pointer to a variable to store the returned number of firmware
sets in

Usage

int status;
unsigned int numFirmware = 0;

/* Assume that a system has already been
* created or loaded and that it defines
* two firmware sets.
*/

status = xiaGetNumFirmwareSets(&numFirmware);

if (status != XIA_SUCCESS) {
/* ERROR getting number of firmware sets */

}

printf("There are currently %u firmware set(s) defined.\n", numFirmware);

xiaGetFirmwareSets()

int xiaGetFirmwareSets(char *firmware[])

Returns a list of the aliases of the firmware sets defined in the system.

The caller must allocate memory for firmware.

20

Parameters:

firmware A string array of the proper length: numFirmware by MAXALIAS_LEN
(defined in handel_generic.h) Typically this is done by calling xiaGetNum-
FirmwareSets() and using the number of firmware sets to initialize a string
array. Allocate a char * of length MAXALIAS_LEN for each firmware set.

Usage

int status;
unsigned int numFirmware = 0;
unsigned int i;
char **firmware = NULL;

/* Assume that a system has already been loaded. */
status = xiaGetNumFirmwareSets(&numFirmware);
if (status != XIA_SUCCESS) {

/* ERROR getting number of firmware sets */
}

/* Allocate the memory we need for the string array */
firmware = (char **)malloc(numFirmware * sizeof(char *));
if (firmware == NULL) {

/* ERROR allocating memory for firmware sets */
}

for (i = 0; i < numFirmware; i++) {
firmware[i] = (char *)malloc(MAXALIAS_LEN * sizeof(char));
if (firmware[i] == NULL) {

/* ERROR allocating memory for firmware[i] */
}

}

status = xiaGetFirmwareSets(firmware);
if (status != XIA_SUCCESS) {

/* ERROR getting firmware set list */
}

for (i = 0; i < numFirmware; i++) {
printf("firmware[%u] = %sn", i, firmware[i]);

}

for (i = 0; i < numFirmware; i++) {
free((void *)firmware[i]);

}

21

free((void *)firmware);
firmware = NULL;

xiaGetFirmwareSets_VB()

int xiaGetFirmwareSets_VB(unsigned int index, char *alias)

Gets a firmware set alias by index. This routine serves as a replacement of the
routine xiaGetFirmwareSets() for use with Visual Basic or other languages that
will not allow an array of strings to be passed into the Handel DLL. The difference
between this routine and xiaGetFirmwareSets is that xiaGetFirmwareSets
returns a list of all of the firmware aliases that are currently defined in the
system. xiaGetFirmwareSets_VB returns a single firmware alias, where index
ranges from 0 to numFirmware – 1. The standard idiom is to get the number
of firmware sets in the system with a call to xiaGetNumFirmwareSets() and to
then loop from 0 to numFirmware –1 in order to get all of the firmware aliases
in the system. See the Usage section for an example of how this is done.

The caller must allocate memory for alias.

Parameters:

index Position of firmware alias in system where index ranges from 0 to num-
Firmware – 1. For instance, if you have a system where 3 firmware sets
are defined, the valid values for index are 0, 1 and 2.

alias Alias of the firmware located at the specified index. The caller must allocate
memory a char * of length MAXALIAS_LEN (defined handel_generic.h).

Return Codes:

Code Description
XIA_BAD_INDEX The specified index is out-of-range

Usage

int status;
unsigned int numFirmware = 0;
unsigned int i;
char **aliases = NULL;

/* Assume that a valid system has been setup
* here.
*/

status = xiaGetNumFirmwareSets(&numFirmware);

22

if (status != XIA_SUCCESS) {
/* ERROR getting # of firmware sets in system */

}

/* Must allocate proper amount of memory */
aliases = (char **)malloc(numFirmware * sizeof(char *));
if (aliases == NULL) {

/* ERROR allocating memory for aliases array */
}

for (i = 0; i < numFirmware; i++) {
aliases[i] = (char *)malloc(MAXALIAS_LEN * sizeof(char));
if (aliases[i] == NULL) {

/* ERROR allocating memory for aliases[i] */
}

}

for (i = 0; i < numFirmware; i++) {
status = xiaGetFirmwareSets(i, aliases[i]);
if (status != XIA_SUCCESS) {

/* ERROR getting firmware alias at index i */
}

}

for (i = 0; i < numFirmware; i++) {
printf("Firmware alias at index = %u: %s", i, aliases[i]);

}

for (i = 0; i < numFirmware; i++) {
free((void *)aliases[i]);

}

free(aliases);

xiaGetNumPTRRs()

int xiaGetNumPTRRs(char *alias, unsigned int numPTRR)

Returns the number of PTRRs that are defined for the firmware set with the
specified alias. If the firmware has an FDD defined instead of PTRRs an error
will be returned.

Parameters:

alias A valid firmware alias

23

numPTRR A pointer to a variable to store the number of PTRRs in.

Return Codes:

Code Description
XIA_NO_ALIAS Specified alias does not exist
XIA_LOOKING_PTRR The specified firmware has an FDD defined

Usage

int status;
unsigned int numPTRR = 0;

/* Assume firmware with alias "firmware1" already
* exists in the system.
*/

status = xiaGetNumPTRRs("firmware1", &numPTRR);
if (status != XIA_SUCCESS) {

/* ERROR getting number of PTRRs */
}

printf("firmware1 has %u PTRR(s).\n", numPTRR);

xiaGetFirmwareItem()

int xiaGetFirmwareItem(char *alias, unsigned short ptrr, char *name, void *value)

Retrieves information from a firmware set’s configuration. All of the names that
are listed below may be retrieved. If you get the “filename” item for a firmware
alias that uses PTRRs, a blank string will be returned.

Firmware Items

FDD

name type Value Description
filename null-terminated string Name of FDD file to be used. This file will be searched for using the standard methods described in Files.
keyword null-terminated string Each time keyword is used as a name, another keyword is appended to the list associated with this firmware. CAUTION: Keywords may not be removed from the list once they are added. These keywords will be used by Handel when searching the FDD file for the proper firmware. Handel always adds a keyword associated with the detector type. (Optional)

No FDD

name type Value Description
mmu null-terminated string The filename of the memory management unit, if present. (Optional)

24

ptrr unsigned short A unique identifier for a Peaking Time Range Reference. Each firmware should have several PTRRs to cover the full peaking time range.
min_peaking_time double The minimum peaking time value for the current PTRR in Âµs.
max_peaking_time double The maximum peaking time value for the current PTRR in Âµs.
fippi null-terminated string The filename of the FiPPI program to be downloaded for this PTRR.
dsp null-terminated string The filename of the DSP program to be downloaded for this PTRR
user_fippi null-terminated string The filename of the user-defined FiPPI program to be downloaded for the PTRR. Not available with all products. (Optional)
filter_info unsigned short Add another filter information value to the existing information. Currently, there is no way to remove filter information (selectively) after it has been added.

Additional Items

num_filter (unsigned short) The number of elements in the filter_info array
for the specified PTRR. The typical use of this value is for allocating enough
memory to retrieve the entire filter_info array using the filter_info
parameter.

filter_info (unsigned short)

Parameters:

alias A valid firmware alias
ptrr The PTRR that corresponds to the information to be retrieved. Not all

names to be retrieved require a PTRR, in which case it may be set to
NULL.

name Name of value to retrieve
value Void pointer to variable in which the returned data will be stored. It is

very important that the type of this variable is appropriate for the data to
be retrieved. See the tables above for more information. See the Usage
section for more information on how to use void pointers in this context.

Return Codes:

Code Description
XIA_NO_ALIAS Specified alias does not exist
XIA_BAD_VALUE No PTRRs defined for this alias
XIA_BAD_PTRR Specified PTRR does not exist
XIA_BAD_NAME Specified name is invalid

Usage

int status;
double min_ptime;

/* Create a firmware w/ alias "firmware1" using PTRRs and add all of

25

* the necessary information to it. We will only retrieve the minimum
* peaking time for PTRR 0 here. Retrieving other values should follow
* similar patterns.
*/

status = xiaGetFirmwareItem("firmware1", 0, "min_peaking_time", (void *)&min_ptime);

if (status != XIA_SUCCESS) {
/* ERROR Getting PTRR 0 minimum peaking time */

}

printf("Minimum peaking time (PTRR 0) = %lf\n", min_ptime);

Modules

Routines for querying information about modules. A module is an XIA card
consisting of one or more channels.

• xiaGetNumModules()
• xiaGetModules()
• xiaGetModules_VB()
• xiaGetModuleItem()
• Enumerating Modules and Channels

xiaGetNumModules()

int xiaGetNumModules(unsigned int *numModules)

Returns the number of modules currently defined in the system.

Parameters:

numModules Pointer to a variable to store the returned number of detectors
in

Usage

int status;
unsigned int numModules = 0;

/* Assume that a system has already been
* created or loaded.
*/

status = xiaGetNumModules(&numModules);
if (status != XIA_SUCCESS) {

26

/* ERROR getting number of modules */
}

printf("There are currently %u modules defined.\n", numModules);

xiaGetModules()

int xiaGetModules(char *modules[])

Returns a list of the aliases of the modules defined in the system.

The caller must allocate memory for modules. Typically this is done by calling
xiaGetNumModules() and using the number to initialize a string array. Allocate
a char * of length MAXALIAS_LEN for each module.

Parameters:

modules A string array of the proper length: numModules by MAX-
ALIAS_LEN (defined in handel_generic.h)

Usage

int status;
unsigned int numModules = 0;
unsigned int i;
char **modules = NULL;

/* Assume that a system has already been loaded. */
status = xiaGetNumModules(&numModules);
if (status != XIA_SUCCESS) {

/* ERROR getting number of modules */
}

/* Allocate the memory we need for the string array */
modules = (char **)malloc(numModules * sizeof(char *));
if (modules == NULL) {

/* ERROR allocating memory for modules */
}

for (i = 0; i < numModules; i++) {
modules[i] = (char *)malloc(MAXALIAS_LEN * sizeof(char));
if (modules[i] == NULL) {

/* ERROR allocating memory for modules[i] */
}

}

27

status = xiaGetModules(modules);
if (status != XIA_SUCCESS) {

/* ERROR getting module list */
}

for (i = 0; i < numModules; i++) {
printf("modules[%u] = %sn", i, modules[i]);

}

for (i = 0; i < numModules; i++) {
free((void *)modules[i]);

}

free((void *)modules);
modules = NULL;

xiaGetModules_VB()

int xiaGetModules_VB(unsigned int index, char *alias)

Gets a module alias by index. This routine serves as a replacement of the
routine xiaGetModules() for use with Visual Basic or other languages that will
not allow an array of strings to be passed into the Handel DLL. This returns
a single module alias, where index ranges from 0 to numModules – 1. The
standard idiom is to get the number of modules in the system with a call to
xiaGetNumModules() and then loop from 0 to numModule –1 in order to get all
of the module aliases in the system.

The caller must allocate memory for alias.

Parameters:

index Position of module alias in system where index ranges from 0 to numMod-
ule – 1. For instance, if you have a system where 3 modules are defined,
the valid values for index are 0, 1 and 2.

alias Alias of the module located at the specified index. The caller must allocate
a string of length MAXALIAS_LEN (defined in handel_generic.h).

Return Codes:

Code Description
XIA_BAD_INDEX The specified index is out-of-range

28

Usage

int status;
unsigned int numModules = 0;
unsigned int i;
char **aliases = NULL;

/* Assume that a valid system has been setup */
status = xiaGetNumModules(&numModules);
if (status != XIA_SUCCESS) {

/* ERROR getting # of modules in system */
}

/* Must allocate proper amount of memory */
aliases = (char **)malloc(numModules * sizeof(char *));
if (aliases == NULL) {

/* ERROR allocating memory for aliases array */
}

for (i = 0; i < numModules; i++) {
aliases[i] = (char *)malloc(MAXALIAS_LEN * sizeof(char));
if (aliases[i] == NULL) {

/* ERROR allocating memory for aliases[i] */
}

}

for (i = 0; i < numModules; i++) {
status = xiaGetModules_VB(i, aliases[i]);
if (status != XIA_SUCCESS) {

/* ERROR getting module alias at index i */
}

}

for (i = 0; i < numModules; i++) {
printf("Module alias at index = %u: %s", i, aliases[i]);

}

for (i = 0; i < numModules; i++) {
free((void *)aliases[i]);

}

free(aliases);

29

xiaGetModuleItem()

int xiaGetModuleItem(char *alias, char *name, void *value)

Retrieve information from a module’s configuration. All names listed below may
be retrieved using this routine except for firmware_set_all. Consult the list for
the data types to use for value.

Module Items

Items in the following list are supported for all module types.

module_type null-terminated string The name corresponding to the type
of module. Supported types are saturn (and dxpx10p and x10p for backward
compatibility), udxp, udxps, xmap, mercury, and stj. Note that a build of
Handel may support only one product line; the other products are compiled
out of the code. This must be specified first.

interface null-terminated string The physical interface type for this module.
Supported interfaces are “genericEPP”, “epp”, “usb”, “usb2”, “serial”,
“pxi”. It is not strictly necessary to specify the interface, as Handel can
recognize the interface based on the first interface item that is added to
the system.

number_of_channels unsigned int Number of channels associated with a
module of this type. Not the number of channels in use. That
information will be specified elsewhere. If you have a 4-channel XMAP
module and only plan to use 2 of the channels, this value must still be
set to 4. This value must be added before any of values listed below are
added.

channel{n}_alias int The “detChan” value for channel n. Each physical
channel in the system has a unique “detChan” value associated with it.
This value is important because it is how an individual channel is operated
on by other Handel routines. To disable a channel, set its detChan value
to -1.

channel{n}_detector null-terminated string The alias of the detector
that channel n is attached to. The format of this string is “detec-
tor_alias:m” where is m is the channel number of the actual detector
channel (preamplifier) that this module channel is attached to. The alias
must be a valid detector alias defined in the detector section of the .ini file.

channel{n}_gain double Gain, in this context, describes any modifications
made to the input gain stage of a channel. Most users should set this to
1.00. This value is not the same as the preamplifier gain, as described
in the Detectors section, nor is it the same as the gain set by the DSP
parameter GAINDAC.

firmware_set_all null-terminated string Same as firmware_set_chan{n}
except that the same alias will be used for all channels in the module.

The following lists illustrate the names that apply to specific interfaces.

30

genericEPP and epp:

epp_address unsigned int The address of the EPP port on the host com-
puter. Typically the address is 0x378 or, ocassionally, 0x278.

daisy_chain_id unsigned int The daisy chain ID for this module. Should
only be specified if the module specifically implements the daisy chain
protocol. (Optional)

usb and usb2:

device_number unsigned int The USB device number associated with this
module. Typically this is 0 for a single module system, and increments by
one for each additional module.

serial:

com_port unsigned int The one-based serial port number to which the mod-
ule is attached. Port number N corresponds to COMx where x = N-1.

device_file _char *_ On Linux, a device file to open for terminal IO. This
replaces com_port on that platform.

baud_rate unsigned int The baud rate of the serial port. Typically 115200
but may be firmware-dependent.

pxi:

pci_slot byte_t :

pci_bus byte_t :

Parameters:

alias A valid module alias
name Name of value to retrieve
value Void pointer to variable in which the returned data will be stored. It is

very important that the type of this variable is appropriate for the data to
be retrieved. See the lists above for more information. Consult the Usage
section below for more information on how to use void pointers in this
context.

Return Codes:

Code Description
XIA_NO_ALIAS Specified alias does not exist
XIA_BAD_NAME Specified name is invalid
XIA_WRONG_INTERFACE Specified name does not apply to the current interface
XIA_BAD_CHANNEL Internal Handel error. Contact XIA.

31

Usage

int status;
int detChan;

/* Create a module with alias module1 here and then add all of the
* information associated with a DXP-X10P to it. We will only
* retrieve the detChan value of channel 0 here but the other
* names follow the same pattern.
*/

status = xiaGetModuleItem("module1", "channel0_alias", (void *)&detChan);
if (status != XIA_SUCCESS) {

/* ERROR Getting channel0_alias */
}

printf("Channel 0 detChan = %d\n", detChan);

Enumerating Modules and Channels

While XIA systems are defined hierarchically as a collection of modules each
containing a number of channels, acquisition APIs require a unique channel
alias, also known as a detChan, as the primary identifying argument. Thus some
means of querying the system is needed to obtain the detChans to use in calling
acquisition APIs.

While detChans by definition are only constrained to be unique for each channel,
XIA tools do generate .ini files with zero-based whole number channel aliases.
Therefore if you know the number of channels in the system, you can treat the
detChan as a zero-based index. This may be easy in a single module system, but
for robustness we recommend looping through the modules to get the aliases.

The following example shows the easiest way to loop through all modules and
channels and perform an API call on each detChan. The same loop structure
could be used at the beginning of your application to cache the detChans in a
module structure for later use.

The examples in this section use the routine xiaGetModules_VB()
for convenience to avoid allocating memory for all the module aliases.
You may also get all the aliases in one call using the techniques
demonstrated in xiaGetModules().

int status;
unsigned int numModules = 0;
unsigned int mod;

/* Assume that a valid system has been setup */

32

status = xiaGetNumModules(&numModules);
if (status != XIA_SUCCESS) {

/* ERROR getting # of modules in system */
}

/* For each module in the system */
for (mod = 0; mod < numModules; mod++) {

char module[MAXALIAS_LEN];
int numChannels;
int chan;

status = xiaGetModules_VB(mod, module);
if (status != XIA_SUCCESS) {

/* ERROR getting module alias at index mod */
}

status = xiaGetModuleItem(module, "number_of_channels", &numChannels);
if (status != XIA_SUCCESS) {

/* ERROR getting number of channels for module */
}

/* For each channel in the module */
for (chan = 0; chan < numChannels; chan++) {

char item[20];
int detChan;

sprintf(item, "channel%d_alias", chan);
status = xiaGetModuleItem(module, item, &detChan);
if (status != XIA_SUCCESS) {

/* ERROR getting channel alias */
}

/* Performing an acquisition task with detChan here will do it
* for each channel in the system.
*/

}
}

To perform a task on the first channel in each module, simply operate on
“channel0_alias” instead of all channels, as shown in the following example. The
same loop structure could be used with module item “number_of_channels” to
count the total number of channels in the system.

int status;
unsigned int numModules = 0;
unsigned int mod;

33

/* Assume that a valid system has been setup */
status = xiaGetNumModules(&numModules);
if (status != XIA_SUCCESS) {

/* ERROR getting # of modules in system */
}

/* For each module in the system */
for (mod = 0; mod < numModules; mod++) {

char module[MAXALIAS_LEN];
int numChannels;
int chan;

/* Get the module alias */
status = xiaGetModules_VB(mod, module);
if (status != XIA_SUCCESS) {

/* ERROR getting module alias at index mod */
}

/* Get the detChan of the first channel in the module */
status = xiaGetModuleItem(module, "channel0_alias", &detChan);
if (status != XIA_SUCCESS) {

/* ERROR getting channel alias */
}

/* Performing an acquisition task with detChan here will do it
* for the first channel in each module, e.g. get
* run data module_statistics_2.
*/

}

System

Routines for starting the system and loading firmware.

• xiaStartSystem()
• xiaDownloadFirmware()
• xiaBoardOperation()

xiaStartSystem()

int xiaStartSystem(void)

Starts the system previously defined via an .ini file. Connects to the hardware
and downloads the firmware and acquisition values to all active channels in order

34

to set the system up for data acquisition. This routine must be called after
configuring the system with a configuration file (see Initializing Handel).

This routine also performs several validation steps to insure that all of the
configuration information required to run the system is present. Specifically,
the firmware and detector information is validated by Handel while the module
is verified by the Product Specific Layer. If an inconsistency is found, it will
be reported back as an error and should be fixed before attempting to call
xiaStartSystem() again.

This routine may block for up to several seconds, depending on the size of the
system and timing of firmware downloading.

Return Codes:

Code Description
XIA_FIRM_BOTH Both a FDD file and PTRR information have been specified in one of the firmware aliases. Please report this error to XIA since this check should be performed at the configuration stage and has only been left in as a redundancy check.
XIA_PTR_OVERLAP A PTRR has a peaking time range that overlaps with another PTRR.
XIA_MISSING_FIRM The DSP and/or FiPPI information is missing for a PTRR.
XIA_MISSING_POL The polarity isn’t defined for a detector.
XIA_MISSING_GAIN The preamplifier gain isn’t defined for at least one detector channel.
XIA_MISSING_TYPE The detector type isn’t defined for a detector.
XIA_NO_DETCHANS No detChans are defined in the system.
XIA_INFINITE_LOOP Problem with detChan and detChan Set definitions such that an infinite loop exists. This prevents against situations where a detChan (or Set) refers to another detChan (or Set) that then refers back to itself.
XIA_UNKNOWN Internal error. Contact XIA.
XIA_INVALID_DETCHAN A detChan in the system does not refer to an existing module.
XIA_NO_ALIAS Internal Handel error. Contact XIA.
XIA_BAD_NAME Internal Handel error. Contact XIA.
XIA_WRONG_INTERFACE Internal Handel error. Contact XIA.
XIA_BAD_CHANNEL Internal Handel error. Contact XIA.
XIA_UNKNOWN_BOARD Board type in system does not exist in Handel.
XIA_MISSING_INTERFACE A module in the system is missing interface information.
XIA_MISSING_ADDRESS (For Saturn/Mercury) EPP address missing from interface information.
XIA_INVALID_NUMCHANS The number of channels set for a board type is incorrect.
XIA_BINS_OOR The bin range is out-of-range for the board type.
XIA_BAD_VALUE Internal Handel error. Contact XIA.
XIA_FILEERR Error getting firmware from FDD file.

Usage:

/* Assume a system has been created dynamically or loaded from
* an .ini file.
*/

int status;

35

status = xiaStartSystem();
if (status != XIA_SUCCESS) {

/* ERROR Starting system */
}

xiaDownloadFirmware()

int xiaDownloadFirmware(int detChan, char *type)

Downloads the specified firmware type to a detChan. The following
firmware types are recognized: “dsp”, “fippi”, “user_dsp”, “user_fippi” and
“system_fpga”.

The task of downloading firmware to the system is typically handled
by xiaStartSystem(), so this routine should only be used for situations
where special firmware is required.

Parameters:

detChan detChan to download firmware to. May be either a single detChan
or detChan set. -1 is not allowed.

type The type of firmware to be downloaded. Must be one of “dsp”, “fippi”,
“user_dsp”, “user_fippi” and “system_fpga”.

Return Codes:

Code Description
XIA_NO_ALIAS Internal Handel error. Contact XIA.
XIA_BAD_VALUE Internal Handel error. Contact XIA.
XIA_INVALID_DETCHAN Specified detChan does not exist or is not associated with a known module.
XIA_NO_ALIAS Internal Handel error. Contact XIA.
XIA_UNKNOWN_BOARD Board type corresponding to detChan does not exist in Handel.
XIA_NOSUPPORT_FIRM The specified type of firmware to download is not supported for this board type.
XIA_UNKNOWN_FIRM The specified type of firmware to download is unknown.
XIA_UNKNOWN Internal Handel error. Contact XIA.

Usage

int status;

/* Set up a valid system here */
status = xiaStartSystem();
if (status != XIA_SUCCESS) {

/* ERROR starting system */

36

}

/* Want to start DSP code again */
status = xiaDownloadFirmware(0, "dsp");
if (status != XIA_SUCCESS) {

/* ERROR downloading DSP to detChan o */
}

xiaBoardOperation()

int HANDEL_API xiaBoardOperation(int detChan, char *name, void *value)

Performs product-specific queries and operations.

Parameters:

detChan detChan to apply the acquisition value to. May only be a single
detChan; sets are not allowed.

name Type of data to pass or return. Reference the product-specific Handel
manuals for complete lists by product.

value Variable to return the data in, cast into a void *. See the product-specific
Handel manuals for the required data type for each name.

Return Codes:

Code Description
XIA_INVALID_DETCHAN Specified detChan does not exist or is not associated with a known module.
XIA_BAD_TYPE detChan refers to a detChan set, which is not allowed in this routine.
XIA_UNKNOWN Internal Handel error. Contact XIA.
XIA_BAD_CHANNEL Internal Handel error. Contact XIA.

Usage

int status;
double new_threshold = 1000.0;

/* Set up a valid system here */
status = xiaStartSystem();
if (status != XIA_SUCCESS) {

/* ERROR starting system */
}

/* Change trigger threshold to 1000 eV */

37

status = xiaSetAcquisitionValue(0, "trigger_threshold", (void *)&new_threshold);
if (status != XIA_SUCCESS) {

/* ERROR setting trigger threshold */
}

printf("Trigger threshold now set to: %lf\n", new_threshold);

Run Params

Routines for setting and getting acquisition values, or run parameters.

• xiaSetAcquisitionValues()
• xiaGetAcquisitionValues()
• xiaRemoveAcquisitionValues()
• xiaUpdateUserParams()
• xiaGainOperation()
• xiaGainChange()
• xiaGainCalibrate()
• xiaGetParameter()
• xiaSetParameter()
• xiaGetNumParams()
• xiaGetParamData()
• xiaGetParamName()

xiaSetAcquisitionValues()

int xiaSetAcquisitionValues(int detChan, char *name, void *value)

Translates a high-level acquisition value into the appropriate DSP parameter(s)
in the hardware. Product-specific Handel manuals list the acquisition values for
each product.

This is the preferred method for modifying the DSP settings of a module since
Handel and the PSL are responsible for making all of the necessary calculations
and setting all of the necessary parameters.

In some cases, the actual acquisition value will be slightly different then the
value passed in. This routine returns the actual value in the value parameter so
that the host software may keep its data synchronized with the data in Handel.

This routine will also accept names that are in all capital letters and interpret
them as DSP parameters. Calling this routine with a DSP parameter as the
name will cause the parameter to be written to the channel specified by detChan
and will also add it to the list of acquisition values to be saved.

Setting acquisition values is the mechanism that Handel provides for persistence
of DSP and acquisition value settings. Handel will save this information in the

38

.ini file generated by a call to xiaSaveSystem(). Calling xiaLoadSystem() with
the generated .ini file will cause the saved parameter and acquisition values to
be loaded into the DSP. This allows for a system to be started up in a state very
close to the one it was saved in. See also: Initializing Handel.

Parameters:

detChan detChan to apply the acquisition value to. May be a single detChan
or a detChan set.

name The name of the acquisition value supported by the product or a DSP
parameter.

value Value to set the corresponding acquisition value to. double * cast to
void *.

Return Codes:

Code Description
XIA_INVALID_DETCHAN Specified detChan does not exist or is not associated with a known module.
XIA_UNKNOWN_BOARD Board type corresponding to detChan does not exist in Handel.
XIA_DET_UNKNOWN Internal Handel error. Contact XIA.
XIA_PEAKINGTIME_OOR (For Saturn/Mercury) New peaking time is out of range for specified product.
XIA_FILEERR (For Saturn/Mercury) Error getting firmware from FDD file.
XIA_OPEN_FILE (For Saturn/Mercury) Error opening temporary file.
XIA_NOSUPPORT_FIRM (For Saturn/Mercury) The specified type of firmware to download is not supported for this board type.
XIA_UNKNOWN_FIRM (For Saturn/Mercury) The specified type of firmware to download is unknown.
XIA_BINS_OOR (For Saturn/Mercury) The specified number of bins is out of range for this board type.
XIA_GAIN_OOR (For Saturn/Mercury) The computed gain value is out of range for this board type.
XIA_UNKNOWN Internal Handel error. Contact XIA.

Usage

int status;
double new_threshold = 1000.0;

/* Set up a valid system here */
status = xiaStartSystem();
if (status != XIA_SUCCESS) {

/* ERROR starting system */
}

/* Change trigger threshold to 1000 eV */
status = xiaSetAcquisitionValue(0, "trigger_threshold", (void *)&new_threshold);
if (status != XIA_SUCCESS) {

/* ERROR setting trigger threshold */

39

}

printf("Trigger threshold now set to: %lf\n", new_threshold);

xiaGetAcquisitionValues()

int xiaGetAcquisitionValues(int detChan, char *name, void *value)

Retrieves the current setting of an acquisition value. This routine returns the
same value as xiaSetAcquisitionValues() in the value parameters.

Parameters:

detChan detChan to retrieve the acquisition value from. Must be a single
detChan.

name The name of the acquisition value to retrieve. Reference the product-
specific Handel manuals for the complete list by product.

value Variable to return the value. double * cast in void *.

Return Codes:

Code Description
XIA_BAD_TYPE Specified detChan must be a single detChan and not a detChan set.
XIA_INVALID_DETCHAN Specified detChan does not exist or is not associated with a known module.
XIA_UNKNOWN_BOARD Board type corresponding to detChan does not exist in Handel.
XIA_UNKNOWN_VALUE Specified name isn’t supported by this board type.
XIA_UNKNOWN Internal Handel error. Contact XIA.

Usage

int status;
double peaking_time;

/* Setup valid system here */
status = xiaGetAcquisitionValues(0, "peaking_time", (void *)&peaking_time);
if (status != XIA_SUCCESS) {

/* ERROR getting peaking time */
}

printf("Peaking time = %lf\n", peaking_time);

40

xiaRemoveAcquisitionValues()

int xiaRemoveAcquisitionValues(int detChan, char *name)

Removes an acquisition value for the specified channel.

This routine is not generally needed in user programs, which work with built in
acquisition values and do not add and remove their own. Handel protects against
the removal of any acquisition values that are required for a specific board type.

The implementation of this routine reapplies the values of other
acquisition values to the device. Therefore, as is documented practice
with other acquisition values routines, it must only be called during
the setup phase of the program, i.e. before the first run or in between
runs.

Parameters:

detChan detChan or detChan set to remove the acquisition value from.
name The name of the acquisition value to remove

Return Codes:

Code Description
XIA_UNKNOWN Internal Handel error. Contact XIA.

Usage

int status;
unsigned short slowgap = 3;

/* Assume valid system already setup */
/* Add optional "slowgap" acquisition value */
status = xiaSetAcquisitionValues(0, "slowgap", (void *)&slowgap);
if (status != XIA_SUCCESS) {

/* ERROR adding slowgap acquisition value */
}

/* Now, remove it from the acquisition list */
status = xiaRemoveAcquisitionValues(0, "slowgap");
if (status != XIA_SUCCESS) {

/* ERROR removing slowgap acquisition value */
}

41

xiaUpdateUserParams()

int xiaUpdateUserParam(int detChan)

Downloads the user parameters from the list of current acquisition values for the
specified channel. In this context, a user parameter is a DSP parameter that has
been added to the acquisition values list by a call to xiaSetAcquisitionValues().
This routine checks the acquisition values list for all DSP parameters and then
downloads them to the board.

Parameters:

detChan detChan or detChan set to download parameters to.

Return Codes:

Code Description
XIA_INVALID_DETCHAN Specified detChan does not exist or is not associated with a known module.
XIA_UNKNOWN_BOARD Board type corresponding to detChan does not exist in Handel.
XIA_UNKNOWN Internal Handel error. Contact XIA.

Usage

int status;

/* Assume valid system already setup */

/* Set DSP parameters via xiaSetAcquisitionValues uppercase name
* notation. */

status = xiaUpdateUserParams(0);
if (status != XIA_SUCCESS) {

/* ERROR updating user parameters */
}

xiaGainOperation()

int xiaGainOperation(int detChan, char *name, void *value)

Performs product-specific special gain operations. This routine supersedes the
deprecated xiaGainCalibrate() and xiaGainChange.

Gain Operations

42

All products

calibrate Calibrates the gain using the specified delta. This gain operation
supersedes the deprecated routine xiaGainCalibrate().

Adjusts the specified channel’s settings in order to scale the energy value
by the specified amount. Typically the preamplifier gain is adjusted by the
inverse of the delta.

It may take several iterations of measuring and shifting the energy value
in order to achieve the correct energy value due to small variations in gain
control sensitivity.

For Saturn, unlike the gain operation adjust_percent_rule
(formerly the routine xiaGainChange), the result of this
routine is that the energy value is shifted by deltaGain.
adjust_percent_rule modifies the absolute step size at the
ADC but does not change the energy value.

Saturn

adjust_percent_rule Adjusts the acquisition value adc_percent_rule by
the delta. This gain operation replaces the removed xiaGainChange rou-
tine.

microDXP

calibrate_gain_trim Applies the delta to the acquisition value gain_trim.

STJ

scale_digital_gain Calibrates the digital gain using the specified delta. Ad-
justs the digital gain by the inverse of the specified delta but doesn’t change
the associated analog gain. Calling this gain operation is equivalent to
calling the special run scale_digital_gain.

Parameters:

detChan detChan or detChan set to perform the gain operation on
name Name of the gain operation to perform.
value Value required for the gain operation cast into a void pointer. The

underlying value is a double for all gain operations defined to date.

Return Codes:

43

Code Description
XIA_MISSING_TYPE Internal Handel error. Contact XIA.
XIA_INVALID_DETCHAN Specifed detChan does not exist in Handel.
XIA_UNKNOWN_BOARD Board type corresponding to detChan does not exist in Handel.
XIA_MISSING_TYPE Internal Handel error. Contact XIA.
XIA_UNKNOWN Internal Handel error. Contact XIA.

Usage:

int status;

/* Set up a valid system here */

/* Scale gain by a factor of 2 */
double gainDelta = 2.0;
status = xiaGainOperation(0, "calibrate_gain_trim", &gainDelta);
if (status != XIA_SUCCESS) {

/* ERROR Changing gain */
}

xiaGainCalibrate()

int xiaGainCalibrate(int detChan, double deltaGain)

Deprecated. See xiaGainOperation().

Adjusts the specified channel’s settings in order to scale the energy value by the
specified amount. Typically the preamplifier gain is adjusted by the inverse of
the delta.

It may take several iterations of measuring and shifting the energy value in
order to achieve the correct energy value due to small variations in gain control
sensitivity.

For Saturn, unlike the gain operation adjust_percent_rule (for-
merly the routine xiaGainChange), the result of this routine is that
the energy value is shifted by deltaGain. adjust_percent_rule
modifies the absolute step size at the ADC but does not change the
energy value.

Parameters:

detChan detChan or detChan set to apply the calibration to.
deltaGain Factor by which to scale the gain.

44

Return Codes:

Code Description
XIA_INVALID_DETCHAN Specified detChan does not exist or is not associated with a known module
XIA_UNKNOWN_BOARD Board type corresponding to detChan does not exist in Handel
XIA_MISSING_TYPE Internal Handel error. Contact XIA.
XIA_GAIN_OOR (For Saturn/Mercury) The calculated gain value (in dB) is out of range.
XIA_UNKNOWN Internal Handel error. Contact XIA.

Usage

int status;
double calibEV = 5900.0;
double peakEV = 0.0;
double scaleFactor = 0.0;

/* Set up a valid system here */

/* To calibrate a spectrum peak, get the current
* peak position and divide the calibration energy
* by it to get the scale factor. Adjust the gain by
* the scale factor.
*/

/* Get actual peak position here using whatever method
* is appropriate. We will assume that peakEV is set
* somehow.
*/

scaleFactor = calibEV / peakEV;
status = xiaGainCalibrate(0, scaleFactor);
if (status != XIA_SUCCESS) {

/* ERROR calibrating gain */
}

xiaGetParameter()

int xiaGetParameter(int detChan, const char *name, unsigned short *value)

Gets the current value of a DSP parameter for the specified channel.

CAUTION: Both this routine and xiaSetParameter() work directly with the
parameters in the DSP. User programs should generally use xiaGetAcquisition-
Values() instead.

45

Parameters:

detChan detChan to get the value from. Must be a single detChan.
name Name of DSP parameter to retrieve
value Pointer to unsigned short variable in which to return the value of the

DSP parameter.

Return Codes:

Code Description
XIA_INVALID_DETCHAN Specified detChan does not exist or is not associated with a known module.
XIA_UNKNOWN_BOARD Board type corresponding to detChan does not exist in Handel
XIA_BAD_TYPE detChan is a set, not a single detChan.
XIA_UNKNOWN Internal Handel error. Contact XIA.

Usage

int status;

unsigned short value;

/* Set up a valid system here */

status = xiaGetParameter(0, "DECIMATION", &value);
if (status != XIA_SUCCESS) {

/* ERROR getting DECIMATION */
}

printf("Decimation = %u\n", value);

xiaSetParameter()

int xiaSetParameter(int detChan, const char *name, unsigned short value)

Sets a DSP paramter for the specified channel. If the parameter is marked as
read-only by the DSP it will not be modified.

CAUTION: Both this routine and xiaGetParameter() work directly with the
parameters in the DSP. User programs should generally use xiaSetAcquisition-
Values() instead.

Parameters:

detChan detChan or detChan set to set the DSP parameter on.

46

name Name of DSP parameter to set.
value Pointer in which to return the DSP parameter.

Return Codes:

Code Description
XIA_INVALID_DETCHAN Specified detChan does not exist or is not associated with a known module.
XIA_UNKNOWN_BOARD Board type corresponding to detChan does not exist in Handel
XIA_UNKNOWN Internal Handel error. Contact XIA.

Usage

int status;
unsigned short newThresh = 0x1000;

/* Set up a valid system */

status = xiaSetParameter(0, "THRESHOLD", newThresh);
if (status != XIA_SUCCESS) {

/* ERROR setting THRESHOLD */
}

xiaGetNumParams()

int xiaGetNumParams(int detChan, unsigned short *numParams)

Returns the number of DSP parameters in the DSP code currently loaded
on the specified detChan. This routine is typically used in conjunction with
[xiaGetParams()] to allocate the proper amount of memory.

Parameters:

detChan detChan to get number of parameters from. Must be a single detChan.
numParams Pointer in which to return the number of parameters.

Return Codes:

Code Description
XIA_INVALID_DETCHAN Specified detChan does not exist or is not associated with a known module
XIA_UNKNOWN_BOARD Board type corresponding to detChan does not exist in Handel.
XIA_BAD_TYPE detChan is a set, not a single detChan
XIA_UNKNOWN Internal Handel error. Contact XIA.

47

Usage

int status;
unsigned short numParams = 0;

/* Assumes that a system has been loaded and
* that xiaStartSystem() has already been
* called.

status = xiaGetNumParams(0, &numParams);
if (status != XIA_SUCCESS) {

/* ERROR getting number of DSP parameters */
}

printf("detChan 0 has %u DSP parameters.\n", numParams);

xiaGetParamData()

int xiaGetParamData(int detChan, char *name, void *value)

Gets the parameter information specified by the name-value pair.

name value Type Description
names char ** The names of all of the DSP parameters for the specified detChan. The proper amount of memory must be allocated for the string array passed in. The standard size is the number of parameters (retrieved using xiaGetNumParams()) by MAXSYMBOL_LEN, which is defined in handel_generic.h.
values unsigned short * The values of all of the DSP parameters for the specified detChan. The proper amount of memory must be allocated for the array passed in. Typically, the number of parameters is retrieved from xiaGetNumParams and then used to allocate an array of the proper length.
access unsigned short * The access information for all of the DSP parameters for the specified detChan. The proper amount of memory must be allocated for the array passed in. Typically, the number of parameters is retrieved from xiaGetNumParams and then used to allocate an array of the proper length. The access values are interpreted as follows: 0 = Read/Write, 1 = Read Only and 2 = WriteOnly.
lower_bounds unsigned short * The lower bounds information for all of the DSP parameters for the specified detChan. The proper amount of memory must be allocated for the array passed in. Typically, the number of parameters is retrieved from xiaGetNumParams and then used to allocate an array of the proper length. If both the lower bounds and upper bounds information for a DSP parameter are equal to 0, then that DSP parameter doesn’t have any defined bounds.
upper_bounds unsigned short * The upper bounds information for all of the DSP parameters for the specified detChan. The proper amount of memory must be allocated for the array passed in. Typically, the number of parameters is retrieved from xiaGetNumParams and then used to allocate an array of the proper length. If both the lower bounds and upper bounds information for a DSP parameter are equal to 0, then that DSP parameter doesn’t have any defined bounds.

Parameters:

detChan detChan to get the DSP parameter names and values from. Must be
a single detChan.

name Name from table above corresponding to the desired type of DSP param-
eter information.

value Value to set the DSP parameter information to, cast to void *. See
the table above require data types and memory allocation information for
each name.

Return Codes:

Code Description
XIA_INVALID_DETCHAN Specified detChan does not exist or is not associated with a known module.
XIA_UNKNOWN_BOARD Board type corresponding to detChan does not exist in Handel

48

Code Description
XIA_BAD_TYPE detChan is set, not a single detChan
XIA_UNKNOWN Internal Handel error. Contact XIA.

Usage

int status;
unsigned short numParams = 0;
unsigned short i;
unsigned short *values = NULL;
unsigned short *access = NULL;
unsigned short *lowBounds = NULL;
unsigned short *highBounds = NULL;
char **names = NULL;

/* Assume that a system has been loaded and
* that xiaStartSystem() has been called.
*/

status = xiaGetNumParams(0, &numParams);
if (status != XIA_SUCCESS) {

/* ERROR getting number of DSP parameters */
}

names = (char **)malloc(numParams * sizeof(char *));
if (names == NULL) {

/* Out of memory trying to create names */
}

for (i = 0; i < numParams, i++) {
names[i] = (char *)malloc(MAXSYMBOL_LEN * sizeof(char));
if (names[i] == NULL) {

/* Out of memory trying to create names[i] */
}

}

values = (unsigned short *)malloc(numParams * sizeof(unsigned short));
if (values == NULL) {

/* Out of memory trying to create values */
}

access = (unsigned short *)malloc(numParams * sizeof(unsigned short));
if (access == NULL) {

/* Out of memory trying to create access */

49

}

lowBounds = (unsigned short *)malloc(numParams * sizeof(unsigned short));
if (lowBounds == NULL) {

/* Out of memory trying to create lowBounds */
}

highBounds = (unsigned short *)malloc(numParams * sizeof(unsigned short));
if (highBounds == NULL) {

/* Out of memory trying to create high bounds */
}

status = xiaGetParamData(0, "names", (void *)names);
if (status != XIA_SUCCESS) {

/* ERROR getting DSP parameter names */
}

status = xiaGetParamData(0, "values", (void *)values);
if (status != XIA_SUCCESS) {

/* ERROR getting DSP parameter values */
}

status = xiaGetParamData(0, "access", (void *)access);
if (status != XIA_SUCCESS) {

/* ERROR getting DSP parameter access information */
}

status = xiaGetParamData(0, "lower_bounds", (void *)lowBounds);
if (status != XIA_SUCCESS) {

/* ERROR getting DSP parameter lower bounds information */
}

status = xiaGetParamData(0, "upper_bounds", (void *)highBounds);
if (status != XIA_SUCCESS) {

/* ERROR getting DSP parameter upper bounds information */
}

for (i = 0; i < numParams; i++) {
printf("%s = %u: %u %u %u\n", names[i], values[i], access[i],

lowBounds[i], highBounds[i]);
}

for (i = 0; i < numParams; i++) {
free((void *)names[i]);

}

50

free((void *)names);
names = NULL;

free((void *)values);
values = NULL;

free((void *)access);
access = NULL;

free((void *)lowBounds);
lowBounds = NULL;

free((void *)highBounds);
highBounds = NULL;

xiaGetParamName()

int xiaGetParamName(int detChan, unsigned short index, char *name)

Returns the DSP parameter name located at the specified index. This routine
should be used in place of [xiaGetParams()] when interfacing to Handel with a
language that doesn’t support the passing of string arrays to DLLs, like Visual
Basic.

Typical use is to get the number of DSP parameters for the detChan with a call
to xiaGetNumParams(). Then loop for 0 to numParams –1 to read in all of the
DSP parameter names.

Parameters:

detChan detChan to get the DSP parameter name from. Must be a single
detChan.

index Index of the desired DSP parameter name in the complete DSP parameter
name list.

name A string of the proper length, MAXSYMBOL_LEN (defined in han-
del_generic.h)

Return Codes:

Code Description
XIA_INVALID_DETCHAN Specified detChan does not exist or is not associated with a known module.
XIA_UNKNOWN_BOARD Board type corresponding to detChan does not exist in Handel
XIA_BAD_TYPE detChan is set, not a single detChan
XIA_UNKNOWN Internal Handel error. Contact XIA.

51

Usage

int status;
unsigned short numParams = 0;
unsigned short i;
char name[MAXSYMBOL_LEN];

/* Assume that a valid system has been setup here */

status = xiaGetNumParams(0, &numParams);
if (status != XIA_SUCCESS) {

/* ERROR getting number of DSP params */
}

for (i = 0; i < numParams; i++) {
status = xiaGetParamName(0, i, name);
if (status != XIA_SUCCESS) {

/* ERROR getting DSP parameter name at index i */
}

printf("DSP Parameter Name at index = %u: %s\n", i, name);
}

Run Control

Routines to start and stop runs and read data from the device.

• xiaStartRun()
• xiaStopRun()
• xiaGetRunData()
• xiaDoSpecialRun()
• xiaGetSpecialRunData()

xiaStartRun()

int xiaStartRun(int detChan, unsigned short resume)

Starts a run on the specified detChan or detChan set. For some products,
e.g. XMAP, even if a single channel is specified, all channels for that module
will have a run started. This is an intrinsic property of the hardware and there
is no way to circumvent it in the software.

The resume parameter controls whether the MCA memory will be cleared prior
to starting the run.

52

Parameters:

detChan detChan or detChan set on which to start a run.
resume 0 to clear the MCA. 1 to resume without clearing the MCA.

Return Codes:

Code Description
XIA_INVALID_DETCHAN Specified detChan does not exist or is not associated with a known module
XIA_UNKNOWN_BOARD Board type corresponding to detChan does not exist in Handel
XIA_UNKNOWN Internal Handel error. Contact XIA.

Usage

int status;

/* Set up a valid system here */

status = xiaStartRun(0, 0);
if (status != XIA_SUCCESS) {

/* ERROR starting a run */
}

xiaStopRun()

int xiaStopRun(int detChan)

Stops a run on the specified channel(s). For some products, this will stop a run
on all of the channels in detChan’s module.

Parameters:

detChan detChan or detChan set on which to stop the run.

Return Codes:

Code Description
XIA_INVALID_DETCHAN Specified detChan does not exist or is not associated with a known module
XIA_UNKNOWN_BOARD Board type corresponding to detChan does not exist in Handel
XIA_TIMEOUT (For Saturn/Mercury) Timeout waiting for run to end. (BUSY not equal to 0)
XIA_UNKNOWN Internal Handel error. Contact XIA.

53

Usage

int status;

/* Set up a valid system here */

status = xiaStartRun(0, 0);

if (status != XIA_SUCCESS) {
/* ERROR starting run */

}

/* Wait for data to be collected */

status = xiaStopRun(0);

if (status != XIA_SUCCESS) {
/* ERROR stopping run */

}

xiaGetRunData()

int xiaGetRunData(int detChan, char *name, void *value)

Returns run data for the channel. This is the primary routine to read out spectra
or any other data pertaining to a run.

Parameters:

detChan detChan to get data from. Must be a single detChan.
name Type of data to get. Reference the product-specific Handel manuals for

complete lists by product.
value Variable to return the data in, cast into a void *. See the product-specific

Handel manuals for the required data type for each name.

Return Codes:

Code Description
XIA_INVALID_DETCHAN Specified detChan does not exist or is not associated with a known module.
XIA_UNKNOWN_BOARD Board type corresponding to detChan does not exist in Handel
XIA_BAD_TYPE detChan is a set, not a single detChan.
XIA_UNKNOWN Internal Handel error. Contact XIA.

54

Usage

int status;
unsigned long mcaSize = 0;
unsigned long *mca = NULL;

/* Set up a valid system here. */

status = xiaStartRun(0, 0);
if (status != XIA_SUCCESS) {

/* ERROR starting run */
}

/* Wait for data to collect */

status = xiaStopRun(0);
if (status != XIA_SUCCESS) {

/* ERROR stopping run */
}

/* Now we can read out the data */
status = xiaGetRunData(0, "mca_length", (void *)&mcaSize);
if (status != XIA_SUCCESS) {

/* ERROR reading out mca_length */
}

mca = (unsigned long *)malloc(mcaSize * sizeof(unsigned long));
if (mca == NULL) {

/* Ran out of memory */
}

status = xiaGetRunData(0, "mca", (void *)mca);
if (status != XIA_SUCCESS) {

/* ERROR reading our mca data */
}

/* Process spectrum data here */

xiaDoSpecialRun()

int xiaDoSpecialRun(int detChan, char *name, void *info)

Starts and stops a special run on the specified channel. Special runs include
various diagnostic, setup, and calibration routines, as opposed to MCA and
mapping, and list mode runs started with xiaStartRun().

55

This routine will block program execution until the special run is complete or
an internal timeout occurs. (Internal timeouts vary between XIA processors and
special run types.)

The types of special runs available for the various products are listed in the
Special Run Data tables in the product-specific Handel manuals along with the
composition of the info array for each type of run. The info array is used to
provide additional parameters for some special run types.

Some special runs require a call to xiaGetSpecialRunData() in order
to properly stop the run. Reference the product-specific Handel
manuals for a designation of this behavior by special run type.

Parameters:

detChan detChan or detChan set to start the special run on.
name Type of special run to perform. See Appendix E for a complete list.
info Additional information (if required) for the special run cast to void *.

Return Codes:

Code Description
XIA_INVALID_DETCHAN Specified detChan does not exist or is not associated with a known module
XIA_UNKNOWN_BOARD Board type corresponding to detChan does not exist in Handel
XIA_TRACE_OOR (For Saturn/Mercury) The specified TRACEWAIT time is out of range.
XIA_TIMEOUT (For Saturn/Mercury) Timeout waiting for the special run to finish. (BUSY not equal to 0).
XIA_UNKNOWN Internal Handel error. Contact XIA.

Usage

int status;

/* tracewait of 5 microseconds (in nanoseconds) */
double info[2] = { 0.0, 5000.0 };

/* Set up a valid system here */

/* Acquire an ADC trace */
status = xiaDoSpecialRun(0, "adc_trace", (void *)info);
if (status != XIA_SUCCESS) {

/* ERROR doing ADC trace run */
}

56

xiaGetSpecialRunData()

int xiaGetSpecialRunData(int detChan, char *name, void *value)

Returns data associated with a special run. For most special runs this also stops
the special run that was started by xiaDoSpecialRun(). This routine must be
called after xiaDoSpecialRun for some types of special runs.

See the Special Run tables in the product-specific Handel manuals for information
on which special runs require the data to be read out and for the names and
data types of the special run data to read out.

Parameters:

detChan detChan to get data from. Must be a single detChan.
name Type of data to get.
value Variable to return the data in, cast into a void *.

Return Codes:

Code Description
XIA_INVALID_DETCHAN Specified detChan does not exist or is not associated with a known module.
XIA_UNKNOWN_BOARD Board type corresponding to detChan does not exist in Handel
XIA_UNKNOWN Internal Handel error. Contact XIA.

Usage

int status;
unsigned long adcLen = 0;;
unsigned long *adc = NULL;

/* tracewait of 5 microseconds (in nanoseconds) */
double info[2] = { 0.0, 5000.0 };

/* Set up a valid system here */

/* Want to acquire an ADC trace */
status = xiaDoSpecialRun(0, "adc_trace", (void *)info);
if (status != XIA_SUCCESS) {

/* ERROR doing ADC trace run */
}

status = xiaGetSpecialRunData(0, "adc_trace_length", (void *)&adcLen);
if (status != XIA_SUCCESS) {

/* ERROR getting length of ADC trace */

57

}

adc = (unsigned long *)malloc(adcLen * sizeof(unsigned long));
if (adc == NULL) {

/* ERROR allocating memory for adc trace */
}

/* Stops run and gets data */
status = xiaGetSpecialRunData(0, "adc_trace", (void *)adc);
if (status != XIA_SUCCESS) {

/* ERROR getting ADC trace */
}

/* Post-process ADC trace data */

System Configuration

Routines to load and save the entire system configuration from and to files.

• xiaLoadSystem()
• xiaSaveSystem()

xiaLoadSystem()

int xiaLoadSystem(char *type, char *filename)

Loads a configuration file of the specified type and name. Since only one type is
supported (handel_ini), it is typically more convenient to call xiaInit(), which
both initializes the library and loads a handel_ini file, instead of xiaInitHandel()
and xiaLoadSystem.

Parameters:

type Configuration file type to load. Currently only handel_ini is supported.
See INI Files for a detailed description of the handel_ini format.

filename Name of file to read configuration from. If the name is specified as
NULL, then Handel assumes that the file to be loaded is named xia.ini.

Return Codes

xiaLoadSystem calls many internal routines to initialize the various
components of the system and may propagate additional error codes
not listed here. Specific error codes are useful for debugging during
development, but simply checking against XIA_SUCCESS provides
adequate information for control flow in most user programs.

58

Code Description
XIA_FILE_TYPE Specified file type is not a supported or valid format to load.
XIA_OPEN_FILE Error opening file
XIA_NOSECTION Section missing in file
XIA_FORMAT_ERROR File is improperly formatted
XIA_FILE_RA File is missing required information

Usage

int status;
status = xiaLoadSystem("handel_ini", "my_config.ini");
if (status != XIA_SUCCESS) {

/* ERROR loading configuration file */
}

xiaSaveSystem()

int xiaSaveSystem(char *type, char *filename)

Saves the current system configuration to the specified file and with the specified
format.

Parameters:

type Configuration file type to save. handel_ini is the only supported format.
See INI Files for a detailed description of the format.

filename Name of file to save to.

Return Codes:

Code Description
XIA_FILE_TYPE Specified file type is not a supported or valid format to load.
XIA_OPEN_FILE Error opening file
XIA_MISSING_TYPE Unknown detector type
XIA_UNKNOWN Internal Handel error. Contact XIA.

Usage

int status;

/* Set up a valid system */

59

status = xiaSaveSystem("handel_ini", "my_config.ini");
if (status != XIA_SUCCESS) {

/* ERROR saving system configuration */
}

Logging

Handel provides a comprehensive logging and error reporting mechanism that
allows an error to be traced back to a specific line of code in Handel.

By default Handel logs errors to stdout. Routines in this section allow the user to
configure the output stream and increase verbosity to record additional internal
information.

• xiaEnableLogOutput()
• xiaSuppressLogOutput()
• xiaSetLogLevel()
• xiaSetLogOutput()
• xiaCloseLog()

xiaEnableLogOutput()

int xiaEnableLogOutput(void)

Enables logging to the output stream as configured by a call to xiaSetLogOutput().
By default, logging is enabled and is directed to standard out, so you would only
need to call this routine if you previously called xiaSuppressLogOutput() and
wanted to re-enable logging.

If Handel has not been initialized then it will be initialized silently
by this routine.

Return Codes:

Code Description
XIA_MD Error reported by MD routine called by Handel.

Usage

int status;

status = xiaInitHandel();
if (status != XIA_SUCCESS) {

/* ERROR initializing Handel */

60

}

/* This call is redundant since logging is enabled by default. */
status = xiaEnableLogOutput();
if (status != XIA_SUCCESS) {

/* ERROR enabling log output */
}

xiaSuppressLogOutput()

int xiaSuppressLogOutput(void)

Stops log output from being written to the current stream.

If Handel has not been initialized then it will be initialized silently
by this routine.

Return Codes:

Code Description
XIA_MD Error reported by MD routine called by Handel

Usage

int status;
status = xiaInitHandel();
if (status != XIA_SUCCESS) {

/* ERROR initializing Handel */
}

status = xiaSuppressLogOutput();

if (status != XIA_SUCCESS) {
/* ERROR suppressing log output */

}

xiaSetLogLevel()

int xiaSetLogLevel(int level)

Sets the level of logging that will be reported to the log output stream. The
levels are defined as constants in the file md_generic.h.

61

MD_DEBUG All messages, including information only relevant to the de-
velopers at XIA. This level generates significantly more output and can
should typically be used only if needed in debugging an issue with XIA.

MD_INFO All messages except for debug level messages.
MD_WARNING All warning and error messages. Warning message indi-

cate conditions where a routine will keep executing but the user should
probably fix the condition warned about. This is the most useful level of
debugging since warning messages often indicate subtle user errors that
aren’t catastrophic but may lead to an unexpected state.

MD_ERROR Only messages that cause a routine to end its execution early.
An error must be fixed before the routine that caused the original error is
called again.

If Handel has not been initialized then it will be initialized silently
by this routine.

Parameters:

level Level of logging desired. See above for discussion of allowed values.

Return Codes:

Code Description
XIA_MD Error reported by MD routine called by Handel

Usage

int status;
status = xiaInitHandel();
if (status != XIA_SUCCESS) {

/* ERROR initializing Handel */
}

status = xiaSetLogLevel(MD_INFO);
if (status != XIA_SUCCESS) {

/* ERROR setting log level to MD_INFO */
}

xiaSetLogOutput()

int xiaSetLogOutput(char *filename)

Sets the output stream for the logging routines. Defaults to stdout.

62

The literal strings “stdout” and “stderr” redirect to the corresponding console
device. All other names are opened as files.

Parameters:

filename Name of file to redirect logging messages, or “stdout” or “stderr”.

Usage

int status;
status = xiaInitHandel();
if (status != XIA_SUCCESS) {

/* ERROR initializing Handel */
}

xiaSetLogOutput("my_log.txt");

xiaCloseLog()

int xiaCloseLog(void)

Closes the logging stream. This effectively closes any open log file and redirects
to stdout. Call this routine when cleaning up program resources if you set log
output to a file with xiaSetLogOutput().

xiaGetErrorText()

char* xiaGetErrorText(int errorcode)

Parameters:

errorcode errorcode as returned by other Handel API functions.

Returns the error text corresponding to specified error code.

Usage

printf("XIA_PRESET_VALUE_OOR -- %s\n", xiaGetErrorText(XIA_LIVEOUTPUT_OOR));
printf("DXP_MEMORY_LENGTH -- %s\n", xiaGetErrorText(DXP_MEMORY_LENGTH));

63

Dynamically setting up the system

The dynamic configuration methods could potentially make the
system unstable if used after starting up. Modification to system
configuration can be safely done by loading a new configuration file
with xiaLoadSystem(), then calling xiaStartSystem().

For advanced or dynamic system configuration, all of the information
associated with these structures is modified through a uniform set
of routines: xiaNew{NAME}, xiaAdd{NAME}Item, xiaModify{NAME}Item,
xiaGet{NAME}Item and xiaRemove{NAME}, where {NAME} is one of “Detec-
tor”, “Firmware”, or “Module”.

Routines for dynamically configuring information about physical detectors.

• xiaNewDetector()
• xiaAddDetectorItem()
• xiaModifyDetectorItem()
• xiaRemoveDetector()
• xiaNewFirmware()
• xiaAddFirmwareItem()
• xiaModifyFirmwareItem()
• xiaRemoveFirmware()
• xiaNewModule()
• xiaAddModuleItem()
• xiaModifyModuleItem()
• xiaRemoveModule()
• xiaAddChannelSetElem()
• xiaRemoveChannelSetElem()
• xiaRemoveChannelSet()

xiaNewDetector()

int xiaNewDetector(char *alias)

Creates a new detector with the name alias that can be referenced by other
routines such as xiaAddDetectorItem(), xiaGetDetectorItem(), xiaModifyDetec-
torItem() and xiaRemoveDetector().

Parameters:

alias Name of new detector to be added to system.

Return Codes:

64

Code Description
XIA_ALIAS_SIZE Length of alias exceeds the maximum allowed length
XIA_ALIAS_EXISTS A detector with the specified alias already exists
XIA_NOMEM Ran out of memory trying to create new detector

Usage

int status;
status = xiaNewDetector("detector1");
if (status != XIA_SUCCESS) {

/* ERROR Creating new detector */
}

xiaAddDetectorItem()

int xiaAddDetectorItem(char *alias, char *name, void *value)

Adds information about the detector using name-value pairs. Reference the
Detector Items list for valid names and required value types.

An error is returned if the specified alias has not been created with a previous
call to xiaNewDetector().

Parameters:

alias A valid detector alias.
name Name from table above corresponding to the information the user wishes

to set.
value Value to set the corresponding detector information to, cast to a void *.

See Usage for examples of using void pointers in this context.

Return Codes:

Code Description
XIA_BAD_VALUE value could not be converted to the required type.
XIA_NO_ALIAS Specified alias does not exist.
XIA_BAD_NAME name is not a valid detector item.

Usage

65

int status;
unsigned int number_of_channels = 1;
double gain = 5.6;

/* Assume that detector already created with alias = detector1 */
status = xiaAddDetectorItem("detector1", "number_of_channels",

(void *)&number_of_channels);
if (status != XIA_SUCCESS) {

/* ERROR Adding number_of_channels */
}

status = xiaAddDetectorItem("detector1", "channel0_gain", (void *)&gain);
if (status != XIA_SUCCESS) {

/* ERROR adding gain */
}

status = xiaAddDetectorItem("detector1", "channel0_polarity", (void *)"pos");
if (status != XIA_SUCCESS) {

/* ERROR adding polarity */
}

xiaModifyDetectorItem()

int xiaModifyDetectorItem(char *alias, char *name, void *value)

Modifies the value of a detector item. See Detector Items for the table of allowed
names and value types.

You must call xiaStartSystem() in order for the changed values to
be reflected in the hardware.

Parameters:

alias A valid detector alias
name Name of value to modify. See description for allowed names.
value Value to change current setting to, cast into a void pointer. See the Usage

section for an example of using a void pointer in this context.

Return Codes:

Code Description
XIA_BAD_VALUE Value is NULL or there is an error with it
XIA_BAD_NAME Specified name is not allowed to be modified or is invalid
XIA_NO_ALIAS Specified alias does not exist

66

Usage

int status;
double new_gain = 5.7;

/* Assume a detector with alias "detector1" has already been created.
*/

status = xiaModifyDetectorItem("detector1", "channel0_gain", (void *)&new_gain);
if (status != XIA_SUCCESS) {

/* ERROR Modifying channel 0 gain */
}

status = xiaStartSystem();
if (status != XIA_SUCCESS) {

/* ERROR starting system */
}

xiaRemoveDetector()

int xiaRemoveDetector(char *alias)

Removes a detector from the system.

Parameters:

alias A valid detector alias

Return Codes:

Code Description
XIA_NO_ALIAS Specified alias does not exist

Usage

int status;

/* Remove detector w/ alias detector1 */
status = xiaRemoveDetector("detector1");
if (status != XIA_SUCCESS) {

/* ERROR removing detector */
}

67

xiaNewFirmware()

int xiaNewFirmware(char *alias)

Creates a new firmware with the name alias that can be referenced by other
routines such as xiaAddFirmwareItem(), xiaGetFirmwareItem(), xiaModify-
FirmwareItem() and xiaRemoveFirmware().

Parameters:

alias Name of new firmware to be added to system

Return Codes:

Code Description
XIA_ALIAS_SIZE Length of alias exceeds the maximum allowed length
XIA_ALIAS_EXISTS Firmware with the specified alias already exists
XIA_NOMEM Ran out of memory trying to create new firmware

Usage

int status;
status = xiaNewFirmware("firmware1");
if (status != XIA_SUCCESS) {

/* ERROR Creating new firmware */
}

xiaAddFirmwareItem()

int xiaAddFirmwareItem(char *alias, char *name, void *value)

Adds information about the firmware using name-value pairs. Firmware can be
divided into two categories: those that use the FDD and those that don’t. Each
category has its own set of name-value pairs. Reference the Firmware Items lists
for details.

The standard procedure is to use an XIA supplied FDD file. If one is defining
custom firmware there are some key points to remember:

• The PTRRs may not overlap
• Once a call to xiaAddFirmwareItem() has been made with the name “ptrr”,

all calls to xiaAddFirmwareItem() using names listed below “ptrr” in
the table above will be added to the most recently added “ptrr”. The
implication of this is that you must add all of the PTRR information before

68

switching to the next PTRR. However, any information that is omitted
may be added using xiaModifyDetectorItem().

Parameters:

alias A valid firmware alias
name Name from table above corresponding to the information the user wishes

to set
value Value to set the corresponding firmware information to, cast into a void

*. See Usage section for examples of using void pointers in this context.

Return Codes:

Code Description
XIA_NO_ALIAS Specified alias does not exist
XIA_BAD_VALUE Error with value passed in
XIA_BAD_NAME Specified name is invalid
XIA_BAD_PTRR The PTRR to be added already exists

Usage

int status;
unsigned short ptrr = 0;
double min_ptime = 0.25;
double max_ptime = 1.25;

/* Only illustrate how to create firmware using PTRRs since using the
* FDD files is trivial. Assume firmware "firmware1" already
* created.
*/

status = xiaAddFirmwareItem("firmware1", "ptrr", (void *)&ptrr);
if (status != XIA_SUCCESS) {

/* ERROR Adding PTRR */
}

status = xiaAddFirmwareItem("firmware1", "min_peaking_time", (void *)&min_ptime);
if (status != XIA_SUCCESS) {

/* Error Adding minimum peaking time to PTRR 0 */
}

status = xiaAddFirmwareItem("firmware1", "max_peaking_time", (void *)&max_ptime);
if (status != XIA_SUCCESS) {

/* ERROR Adding maximum peaking time to PTRR 0 */

69

}

status = xiaAddFirmwareItem("firmware1", "fippi", (void *)"fxpd0g.fip");
if (status != XIA_SUCCESS) {

/* ERROR Adding FiPPI file to PTRR 0 */
}

status = xiaAddFirmwareItem("firmware1", "dsp", (void *)"x10p.hex");
if (status != XIA_SUCCESS) {

/* ERROR Adding DSP file to PTRR 0 */
}

ptrr = 1;
min_ptime = 1.25;
max_ptime = 5.0;
status = xiaAddFirmwareItem("firmware1", "ptrr", (void *)&ptrr);

if (status != XIA_SUCCESS) {
/* ERROR Adding new PTRR */

}

status = xiaAddFirmwareItem("firmware1", "min_peaking_time", (void *)&min_ptime);
if (status != XIA_SUCCESS) {

/* ERROR Adding minimum peaking time to PTRR 1 */
}

xiaModifyFirmwareItem()

int xiaModifyFirmwareItem(char *alias, unsigned short ptrr, char *name, void *value)

Modifies a firmware set item. See Firmware Items for a table of names. The
overall disposition of the firmware may not be modified, i.e., if a firmware is
already using the FDD, it may not use PTRRs; a new firmware alias should be
created for the PTRRs.

You must call xiaDownloadFirmware() or xiaStartSystem() if you
wish to update the firmware that is currently downloaded to the
processor.

Parameters:

alias A valid firmware alias
ptrr The PTRR that corresponds to the information to be modified. Not all

names to be modified require a PTRR, in which case it may be set to
NULL.

70

name Name of value to modify, which must come from the tables in Firmware
Items.

value Value to change current setting to, cast to void *. Reference the tables
for the data type to use for the actual variable.

Return Codes:

Code Description
XIA_BAD_VALUE Value is NULL or there is an error with it
XIA_NO_ALIAS Specified alias does not exist
XIA_BAD_NAME Specified name is invalid

Usage

int status;

/* Add firmware called "firmware1" here that uses PTRRs. Assume that
* there is a single PTRR with the value of 0.
*/

status = xiaModifyFirmwareItem("firmware1", 0, "dsp", (void *)"d2xr0105.hex");
if (status != XIA_SUCCESS) {

/* ERROR Modifying PTRR 0 DSP file name */
}

xiaRemoveFirmware()

int xiaRemoveFirmware(char *alias)

Removes a firmware set from the system.

Parameters:

alias A valid firmware alias

Return Codes:

Code Description
XIA_NO_ALIAS Specified alias does not exist

Usage

71

int status;

/* Assume firmware w/ alias "firmware1" already exists */
status = xiaRemoveFirmware("firmware1");
if (status != XIA_SUCCESS) {

/* ERROR Removing firmware */
}

xiaNewModule()

int xiaNewModule(char *alias)

Creates a new module with the name alias that can be referenced by other routines
such as xiaAddModuleItem(), xiaGetModuleItem(), xiaModifyModuleItem() and
xiaRemoveModule().

Parameters:

alias Name of new module to be added to system

Return Codes:

Code Description
XIA_ALIAS_SIZE Length of alias exceeds the maximum allowed length
XIA_ALIAS_EXISTS A module with the specified alias already exists
XIA_NOMEM Ran out of memory trying to create a new module

Usage

int status;
status = xiaNewModule("module1");
if (status != XIA_SUCCESS) {

/* ERROR Creating new module */
}

xiaAddModuleItem()

int xiaAddModuleItem(char *alias, char *name, void *value)

Adds informaton about the module using name-value pairs. Reference the
Module Items list for valid names and required value types.

When setting up a new module, always add the module_type first, then add the
other details. Certain items in this table apply only to certain module types.

72

An error is returned if you attempt to add an item that does not apply.

Parameters:

alias A valid module alias
name Name from the tables above corresponding to the information that the

user wants to set
value Value to set the corresponding module information to, cast into a void

pointer. See Usage section for an example of using void pointers in this
context.

Return Codes:

Code Description
XIA_BAD_VALUE Error with value passed in
XIA_NO_ALIAS Specified alias does not exist. May refer to module, detector or firmware alias depending on the context of the error message.
XIA_BAD_INTERFACE Specified interface is invalid
XIA_WRONG_INTERFACE Specified name is not a valid element of the current interface
XIA_INVALID_DETCHAN Specified detChan does not exist or is invalid
XIA_BAD_TYPE Internal error. Contact XIA
XIA_BAD_CHANNEL Specified physical detector channel (see channel_detector{n}) is invalid

Usage

int status;
int chan0alias = 0;
unsigned int epp_address = 0x378;
unsigned int num_channels = 1;
double chan0gain = 1.0;

/* Assume that module already created with alias "module1". This
* example will show how to add a DXP-X10P box to the system.
*/

status = xiaAddModuleItem("module1", "module_type", (void *)"dxpx10p");

if (status != XIA_SUCCESS) {
/* ERROR Adding module_type */

}

status = xiaAddModuleItem("module1", "interface", (void *)"epp");
if (status != XIA_SUCCESS) {

/* ERROR Adding interface */
}

73

status = xiaAddModuleItem("module1", "epp_address", (void *)&epp_address);
if (status != XIA_SUCCESS) {

/* ERROR Adding epp_address */
}

status = xiaAddModuleItem("module1", "number_of_channels", (void *)&num_channels);
if (status != XIA_SUCCESS) {

/* ERROR Adding number_of_channels */
}

/* Here, assume that we have the following aliases defined:
* detector1, firmware1.
*/

status = xiaAddModuleItem("module1", "channel0_alias", (void *)&chan0alias);
if (status != XIA_SUCCESS) {

/* ERROR Adding channel0_alias */
}

status = xiaAddModuleItem("module1", "channel0_detector", (void *)"detector1:0");
if (status != XIA_SUCCESS) {

/* ERROR Adding channel0_detector */
}

status = xiaAddModuleItem("module1", "channel0_gain", (void *)&chan0gain);
if (status != XIA_SUCCESS) {

/* ERROR Adding channel0_gain */
}

status = xiaAddModuleItem("module1", "firmware_set_chan0", (void *)"firmware1");
if (status != XIA_SUCCESS) {

/* ERROR Adding firmware_set_chan0 */
}

xiaModifyModuleItem()

int xiaModifyModuleItem(char *alias, char *name, void *value)

Modifies a module item. Allowed names are channel{n}_alias, chan-
nel{n}_detector, channel{n}_gain, firmware_set_all and firmware_set_chan{n}.
See Module Items for the data types to use for value.

You must call xiaStartSystem() xiaDownloadFirmware() in order for
the changed values to be reflected in the hardware.

74

Parameters:

alias A valid module alias
name Name of value to modify
value Value to change current setting to, cast into a void pointer.

Return Codes:

Code Description
XIA_NO_MODIFY Specified name can not be modified
XIA_BAD_VALUE Error with value passed in
XIA_NO_ALIAS Specified alias does not exist. May refer to module, detector or firmware alias depending on the context of the error message.
XIA_INVALID_DETCHAN Specified detChan does not exist or is invalid
XIA_BAD_TYPE Internal error. Contact XIA
XIA_BAD_CHANNEL Specified physical detector channel (see channel_detector{n}) is invalid

Usage

int status;

/* Add a module called "module1" here. See xiaAddModuleItem() for an
* example of the information in "module1".
*/

status = xiaModifyModuleItem("module1", "firmware_set_all", (void *)"new_firmware");
if (status != XIA_SUCCESS) {

/* ERROR Modifying firmware_set_all */
}

xiaRemoveModule()

int xiaRemoveModule(char *alias)

Removes a module from the system.

Parameters:

alias A valid module alias

Return Codes:

Code Description
XIA_NO_ALIAS Specified alias does not exist

75

Usage

int status;

/* Remove the module with alias module1 */
status = xiaRemoveModule("module1");
if (status != XIA_SUCCESS) {

/* ERROR Removing module */
}

xiaAddChannelSetElem()

int xiaAddChannelSetElem(unsigned int detChan, unsigned int newChan)

Adds a detChan to a detector channel set. If the detector channel set doesn’t
already exist, it will be created. If it already exists, newChan will be added to it.

Parameters:

detChan Detector channel set to, if necessary, create and add newChan to
newChan Existing detector channel (or detector channel set) to add to detChan.

CAUTION: This must be a previously created detector channel set or
detector channel.

Return Codes:

Code Description
XIA_INVALID_DETCHAN newChan doesn’t exist yet
XIA_BAD_VALUE Internal Handel error. Contact XIA.
XIA_BAD_TYPE Internal Handel error. Contact XIA.

Usage

int status;

/* Assume that a module with channel 0 set to detChan = 0 exists.
* Now, we want to create a detector channel set with detChan = 1
* that contains detChan = 0. (If this is confusing, consult the
* Handel Users Manual for a detailed explanation of how detector
* channels works.
*/

status = xiaAddChannelSetElem(1, 0);
if (status != XIA_SUCCESS) {

/* ERROR Adding detChan 0 to detector channel set 1 */

76

}

xiaRemoveChannelSetElem()

int xiaRemoveChannelSetElem(unsigned int detChan, unsigned int chan)

Remove a channel from a detector channel set.

Parameters:

detChan Detector channel number of the set that contains chan
chan Detector channel to remove from detChan

Return Codes:

Code Description
XIA_INVALID_DETCHAN Specified detChan(s) are invalid

Usage

int status;

/* Assume that a detector channel set (detChan = 0) has been created
* with detChans 1 & 2 as elements.
*/

/* Remove detChan = 1 from detChan = 0 */
status = xiaRemoveChannelSetElem(0, 1);
if (status != XIA_SUCCESS) {

/* ERROR Removing detChan */
}

xiaRemoveChannelSet()

int xiaRemoveChannelSet(unsigned int detChan)

Removes a detector channel set. Detector channels contained in the set are not
removed; they are only dereferenced them from the specified set.

Parameters:

detChan A valid detector channel set to be removed.

77

Return Codes:

Code Description
XIA_WRONG_TYPE Specified detChan is not a detector channel set
XIA_INVALID_DETCHAN Specified detChan is invalid
XIA_BAD_TYPE Internal Handel error. Contact XIA.

Usage

int status;

/* Assume that a detector channel set (detChan = 0) has been created
* with detChans 1 & 2.
*/

status = xiaRemoveChannelSet(0);
if (status != XIA_SUCCESS) {

/* ERROR Removing detector channel set (detChan = 0) */
}

Legal

Copyright 2005-2018 XIA LLC

All rights reserved

All trademarks and brands are property of their respective owners.

Licenses

Handel

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copy-
right notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.

78

• Neither the name of XIA LLC nor the names of its contributors
may be used to endorse or promote products derived from this
software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS
AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Documentation

Redistribution and use in source (Markdown) and ‘compiled’ forms (HTML,
PDF, LaTeX and so forth) with or without modification, are permitted provided
that the following conditions are met:

• Redistributions of source code (Markdown) must retain the
above copyright notice, this list of conditions and the following
disclaimer as the first lines of this file unmodified.

• Redistributions in compiled form (transformed to other DTDs,
converted to PDF, PostScript, HTML, LaTeX, RTF and other
formats) must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS DOCUMENTATION IS PROVIDED BY XIA LLC “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FIT-
NESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL XIA LLC BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTER-
RUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANYWAY OUT OF THE USE

79

OF THIS DOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

Disclaimer

Information furnished by XIA LLC is believed to be accurate and reliable.
However, XIA assumes no responsibility for its use, nor any infringements of
patents or other rights of third parties, which may result from its use. No license
is granted by implication or otherwise under any patent or patent rights of
XIA. XIA reserves the right to change specifications at any time without notice.
Patents have been applied for to cover various aspects of the design of the DXP
Digital X-ray Processor.

Patents

Patent Notice

80

http://www.xia.com/patents

	Introduction
	Technical Support
	Software Updates
	Email Support

	License
	Platform Support
	Control System Integration
	Acquiring Handel
	Linux
	Building Handel
	Requirements
	Build Environment

	Header Files
	Linking

	Terms
	Calling Conventions
	Language Interface
	Integer Functions
	Word Size
	Searching For Files

	Files
	INI File Format
	Detector
	Firmware
	Module

	API
	Initializing Handel
	xiaInit()

